Serge Bibauw^{1,2,3} Thomas François² Piet Desmet¹

¹ ITEC, **imec** research group at **KU Leuven**

² CENTAL, **UCLouvain**

³ Universidad Central del Ecuador

Interactive practice with a dialogue system, in this case, integrated within an educational video game.

Randomized controlled experiment with young Flemish learners of French (n=209)

Interaction-based vocabulary acquisition

How do output and interaction help lexical development?

Dialogue systems for SLA research

Definition, summarized typology, research questions

Randomized controlled experiment

Groups, learners' profiles, instruments, intervention

Results and discussion

Mixed-effects models, effects of encounters in input/output

Interaction-based vocabulary acquisition

How do output and interaction help lexical development?

Dialogue systems for SLA research

Definition, summarized typology, research questions

Randomized controlled experiment

Groups, learners' profiles, instruments, intervention

Results and discussion

Mixed-effects models, effects of encounters in input/output

Incidental vocabulary acquisition

Incidental vs. intentional learning (e.g. Eysenck, 1982) exposure to material, no test announcement

Incidental vocabulary learning (Schmidt, 1994) within a meaning-focused task

Contextual vocabulary learning (Elgort, Brysbaert, Stevens & Van Assche, 2018)

Interactive tasks and vocabulary acquisition

Task-induced involvement (Laufer & Hulstijn, 2001)

factors for word retention in a task: need, search, evaluation more effective tasks:

- **Negotiation of meaning (+)** (Newton, 1995)
- Word use for completing the task (++) (Newton, 1995)
- Interactionally modified output (++) (Ellis & He, 1999)
- → Many reasons to study incidental vocabulary learning beyond reading

Effectiveness on vocabulary learning: experimental evidence

Meta-analysis of incidental word learning from spoken input

(de Vos, Schriefers, Nivard & Lemhöfer, 2018)

d = 1.05 (large effect)

interactive tasks (d + 0.73) > non-interactive tasks (d + 0.10) > input only

population: university (d + 0.92) > high school (d + 0.74) > elementary school

outcome: recognition (d + 0.42) > recall

Effectiveness on vocabulary learning: broader evidence

Studies of out-of-school exposure to English:

Peters, Noreillie, Heylen, Bulté & Desmet, 2019: significant SEM parameters for vocabulary size (n=138):

```
online/games (\beta = .39***)
```

n.s. parameters: use (friends/family), audiovisual input, written media

De Wilde, Brysbaert & Eyckmans, 2019: **best predictors of receptive vocabulary (n=747):**

```
using social medial in L2 (\beta = .29***) playing games in L2 (\beta = .18***) speaking L2 (\beta = .13***) compare with watching TV (\beta = -.07 n.s.), music (\beta = -.08*)
```

→ all profoundly interactive sources of exposure

Towards our research question...

Interactive tasks seem to be among the most beneficial for incidental vocabulary acquisition, but what is it that makes them so effective?

Attention to form within meaning-focused task? Need to use? Negotiated input? Negotiated output? Multiple exposures?

Interaction-based vocabulary acquisition

How do output and interaction help lexical development?

Dialogue systems for SLA research

Definition, summarized typology, research questions

Randomized controlled experiment

Groups, learners' profiles, instruments, intervention

Results and discussion

Mixed-effects models, effects of encounters in input/output

Dialogue systems for language learning

(Bibauw, François & Desmet, 2019)

Any application or system allowing

to maintain a dialogue

[immediate, synchronous interaction] [written or spoken]

with an automated agent

[chatbot, talking robot, automated personal assistant, conversational agent, non-player character in a video game...]
[tutorial CALL (≠ computer-mediated communication)]

for language learning purposes.

Dialogue systems for language learning

Types of systems (Bibauw, François & Desmet, 2019)

Form-focused systems

CALL-SLT (Baur, Rayner & Tsourakis, 2014)

Goal-oriented systems

SPELL (Morton, Gunson & Jack, 2012)

Dialogue systems for language learning

Types of systems (Bibauw, François & Desmet, 2019)

Form-focused systems

Explicit constraints on meaning: gap-filling, predetermined answers

Focus of forms

Limited interactivity: mostly corrective feedback

No dialogue management: pre-scripted dialogue

Goal-oriented systems

Contextual constraints on meaning: interactional task and context

Focus on meaning/form

High interactivity: conversation influenced by user

Advanced dialogue management:

→ high-level NLP required

Dialogue systems for SLA research

Research questions

- 1. Dialogue-based CALL systems exhibit large variation in terms of interactivity and freedom vs. constraints of the learner within the dialogue: what does it change?
- 2. Technologically, it is **considerably easier to "fake" the interaction** by restraining the learner: it is worth it pedagogically to implement advanced natural language understanding and dialogue management?
- 3. Traditionally, in large-classes school contexts, dialogue is often practiced through written "Dialogue Completion Tasks": it is similar in terms of perception, performance and learning?

Interaction-based vocabulary acquisition

How do output and interaction help lexical development?

Dialogue systems for SLA research

Definition, summarized typology, research questions

Randomized controlled experiment

Groups, learners' profiles, instruments, intervention

Results and discussion

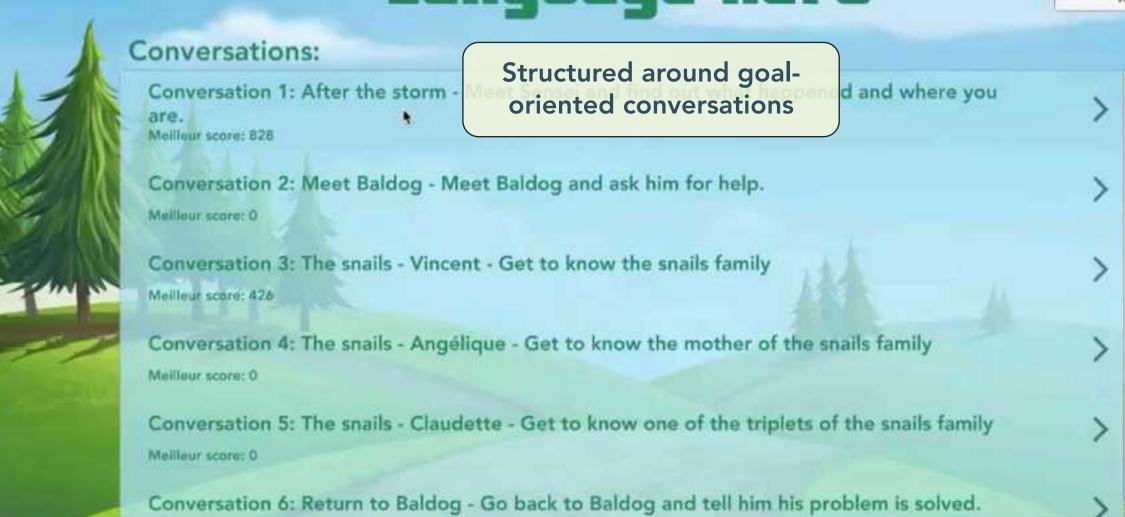
Mixed-effects models, effects of encounters in input/output

Intervention · Dialogue system

LanguageHero, dialogue-based game for young learners

Developed by Leuven-based start-up Linguineo.

(Main) target audience: teenagers (10-14).


Prototype developed for French for Dutch-speaking learners.

Task-based free conversational written interaction.

Logout

Language Hero

Target language: fr
Tutor language: en
Interface | Réglages

He: Bien le bonjour! Comment t'appelles-tu?

You: bonjour je m'appele Marco

He: Enchanté de faire ta connaissance, Rinci Rinc. Rinc. Ne t'en fais pas, je ne suis pas fou. C'est juste que je répète ton nom pour ne pas l'oublier.

You: Commment to t'appele?

He does not seem to have heard you ...

You: Tu t'appele coment?

He does not seem to have heard you ...

Corrective feedback

You: Tu t'appelle comment?

Correction: appelle - Vérifiez l'accord entre le pronom « Tu » et le verbe « appelle ». Task accomplished: Good. That was what we were wondering about.

He: Moi, c'est Vincent. Elle, là-bas, c'est Angélique. Ça, c'est Delphine. Puis on a Georges dans le coin. Et évidemment, on ne peut pas oublier les triplées : Lisette, Claudette et Yvette. Oh! Et puis le petit là-bas, c'est Louis.

405 Score: Friendship IvIO: Acquaintance

Gamification

Current task (2/30):

Say it is nice to meet them.

Microtasks to guide the conversation

Type or say your answer:

Type text...

Free written input

Send your

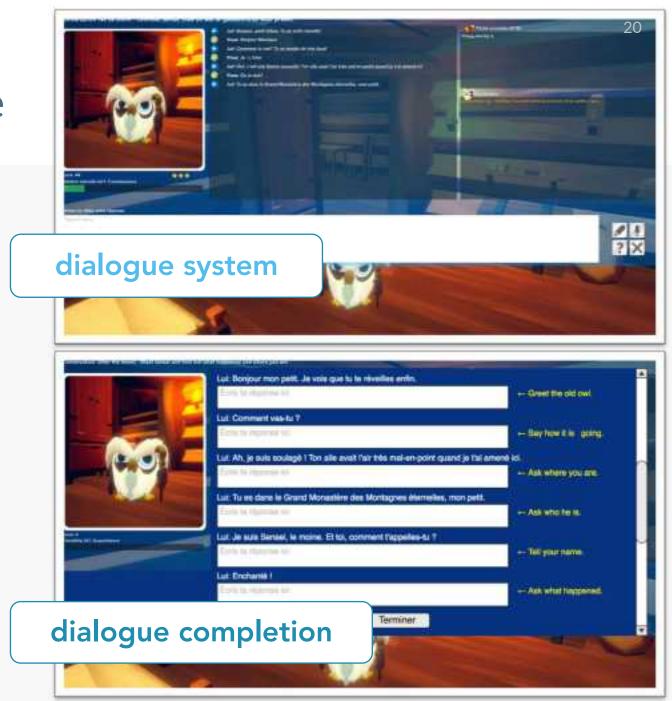
Record your answer

@ Disable help

End ⊗ conversation

We can give you suggestions you can use to come up with an answer:

Scaffolding


Intervention · Conditions Interactive vs. static dialogue

Compare:

(A) fully interactive, immediate/synchronous dialogue system

(B) classic, asynchronous dialogue completion task

Conditions with <u>identical tasks</u>, <u>input</u>, <u>output opportunities</u>, feedback and scaffolding.

Methods

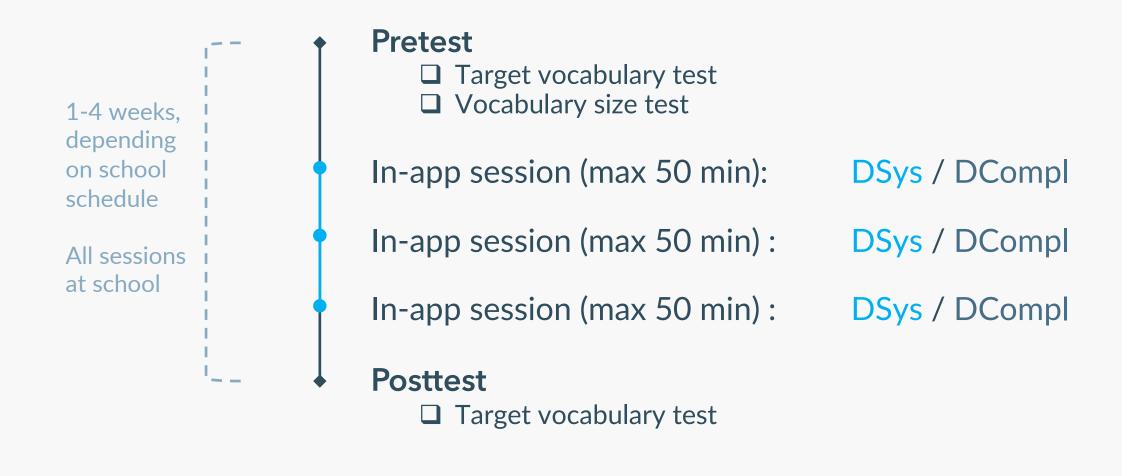
Population and group assignment

4 schools volunteered to participate, with 2-3 classes each:

$$N_{\text{clusters}} = 11$$
 $N_{\text{participants}} = 215$ (208 complete cases)

Random assignment of classes to 3 conditions (distributed equally across schools):

- Dialogue System (experimental): $n_{D.Sys.} = 81$
- Dialogue Completion ('baseline'): $n_{D.Compl} = 79$
- Control ('business-as-usual') $n_{\text{control}} = 49$


Flemish 2^{nd} year secondary school learners of French (M_{age} = 13.4 y.o.)

L1 = 95,3 % Dutch

L2 = French = first L2, M = 3,1 years of instruction, mostly at A1 level (M_{score} in productive vocabulary size test = 3.6/30 in 1K frequency band) 10 (near-)native speakers of French excluded (final N = 198)

Methods

Procedure

Methods · Instruments

Target Vocabulary Test (1)

"Target" words and sequences seen and potentially produced inside the intervention: based on frequency of exposure across whole available content, selecting the most frequent lemmas and the most frequent formulaic sequences.

But no explicit target of instruction (no specific feedback, nor glossing, nor systematic presentation)

⇒ Incidental learning only

At pre- and post-test (identical, randomized order)

Methods · Instruments

Target Vocabulary Test (2)

Receptive part (meaning recognition): 25 items translation, as multiple choice e.g., Potager:

soep
moestuin
vriend
potaarde
lk weet het niet □ soup □ vegetable garden □ friend □ potting soil □ I don't know **Productive** part (in-context form recall): 25 items gap-filling (L2 only) on formulaic sequences e.g., Cet auteur a vraiment _ _ _ _ _ d'imagination : ses livres sont très originaux ! This author really has a lot of imagination: his books are really special!

Methods

Advanced in-game logging

Full logging of all messages read and written in the system

Total: 48 353 messages, 577 494 tokens

Keystroke logging (in ms) for writing fluency measurement and repair behaviours analysis.

Interaction-based vocabulary acquisition

How do output and interaction help lexical development?

Dialogue systems for SLA research

Definition, summarized typology, research questions

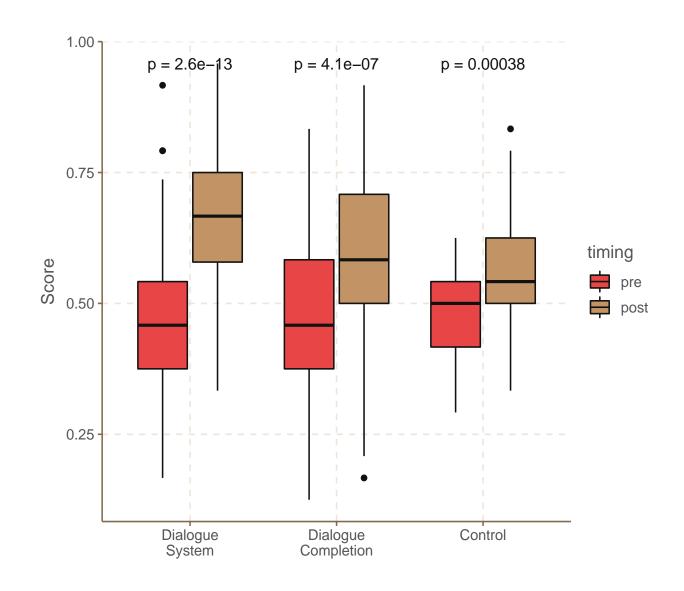
Randomized controlled experiment

Groups, learners' profiles, instruments, intervention

Results and discussion

Mixed-effects models, effects of encounters in input/output

Receptive vocabulary


Very significant increase.

$$d_{\rm DSystem} = 1.17^{***}$$

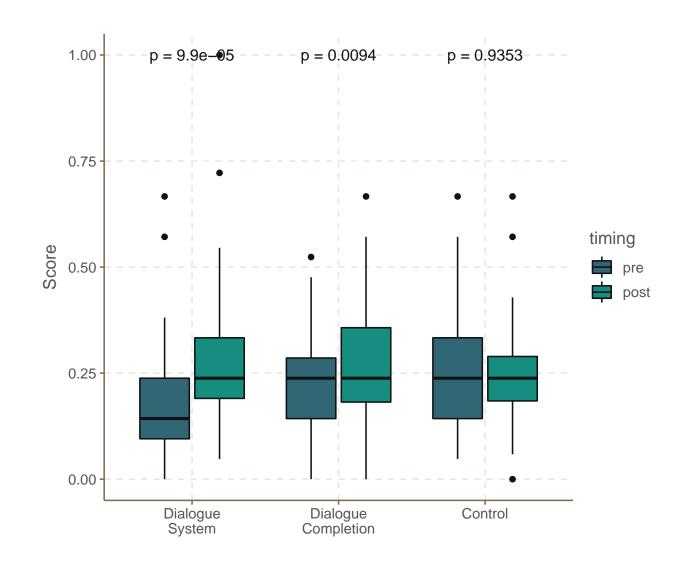
$$d_{\text{DCompletion}} = 0.80^{***}$$

 $d_{\text{DControl}} = 0.67^{***}$

$$d_{\text{DControl}} = 0.67^{***}$$

Considering the short treatment (2h), clear difference between conditions.

Productive vocabulary


Less marked increase, and much more difficult test.

$$d_{\rm DSystem} = 0.56^{***}$$

$$d_{\text{DCompletion}} = 0.39^{***}$$

$$d_{DControl} = 0.02 \text{ n.s.}$$

But here, no improvement in control group and benefits of practice are much clearer.

Linear regression with mixed effects modelling

	β	SE	F	df	р
(Intercept) ***	-0.36	0.08	-4.54	72	0.000
Dialogue System <i>n.s.</i>	-0.03	0.04	-0.77	366	0.440
Dialogue (vs. Control) <i>n.s.</i>	0.05	0.05	1.19	328	0.234
Score at pretest ***	0.39	0.01	35.87	7195	0.000
Vocabulary Size Score ***	0.10	0.01	7.10	171	0.000
Test: Receptive (vs. Productive) ***	0.41	0.10	4.14	54	0.000
Gender: F°	0.05	0.03	1.91	171	0.058
Dialogue × Receptive °	0.08	0.05	1.66	7191	0.098
Dialogue System × Receptive **	0.12	0.04	3.28	7212	0.001
(1 Subject)	0.14				
(1 Item)	0.31				
(Residual)	0.70			R ²	$^2 = 0.45$

Results & discussion

Effects on vocabulary acquisition

Effect is, obviously defined by pretest score and voc. size, and higher for receptive vocabulary.

No direct distinction of effect between Dial. System and Dial. Completion, because it does not affect recall results that much:

sig. differentiated effect on receptive voc. acquisition:

Dial. system > Dial. completion > 'business-as-usual'

Modelling number of encounters with words

Frequency counts (lemma) of

- Potential encounters:
 - probable input (from bot's utterances)
 - opportunities for output (computed from model responses)
- Actual encounters
 - input: bot's utterances (but noticing?)
 - output: user's messages

Modelling actual and potential encounters with words

	β	SE	F	df	р
(Intercept)	-0,53	0,21	-2,53	721	0,012
Dialogue System ***	-0,27	0,07	-3,86	424	0,000
Dialogue (vs. Control) *	0,45	0,21	2,18	1083	0,030
Score at pretest	0,36	0,02	16,58	1442	0,000
Vocabuly size score	0,11	0,03	3,90	141	0,000
Test: Receptive (vs. Productive)	0,30	0,32	0,94	1240	0,348
Gender: F	0,01	0,05	0,25	121	0,804
Potential Encounters: Input *	0,12	0,06	2,11	24	0,045
Potential Encounters: Output	-0,03	0,07	-0,39	28	0,699
Actual Encounters: Input	-0,03	0,02	-1,59	1356	0,112
Actual Encounters: Output ***	0,10	0,02	4,15	1614	0,000
Dialogue × Receptive	0,24	0,31	0,78	1782	0,435
Dialogue System × Receptive **	0,23	0,08	2,97	1727	0,003
(1 Participant)	0,19				
(1 Item)	0,20			R^2	= 0.46
(Residual)	0,73			•	

Modelling actual and potential encounters with words

Major predictor of incidental vocabulary learning is not input, but **output** (actual number of uses).

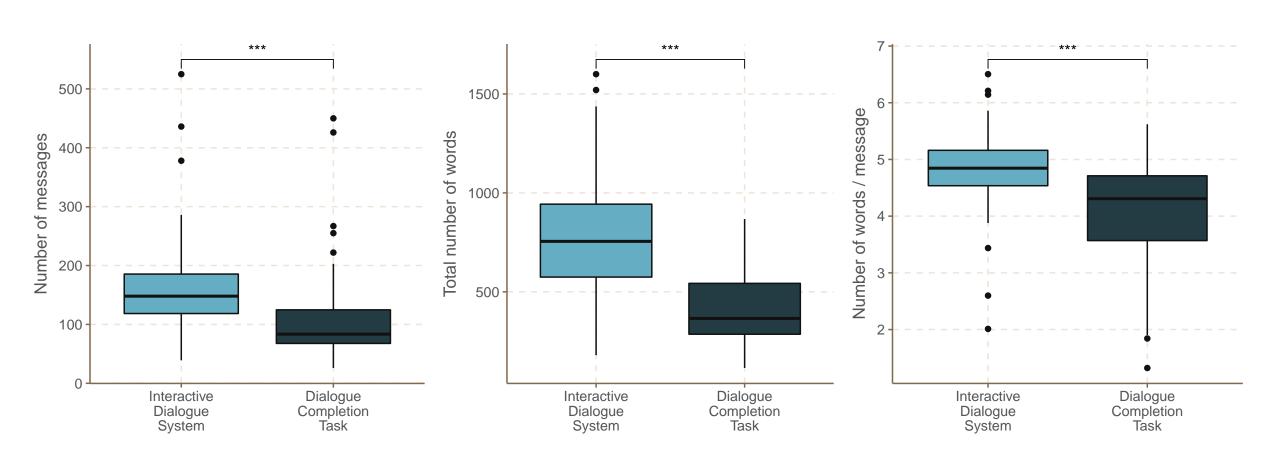
Is it different for receptive vs. productive learning?

Exposure to words ⇒ Receptive test

	β	SE	F	df	р
(Intercept)	-0,38	0,28	-1,35	476	0,178
Dialogue System	-0,05	0,08	-0,63	207	0,529
Dialogue (vs. Ctrl) *	0,65	0,28	2,28	469	0,023
Score at pretest ***	0,37	0,03	12,19	692	0,000
Vocabuly size score ***	0,12	0,04	3,34	141	0,001
Potential Encounters: Input n.s.	0,10	0,09	1,17	16	0,257
Potential Encounters: Output <i>n.s.</i>	-0,03	0,08	-0,33	14	0,748
Actual Encounters: Input n.s.	0,02	0,04	0,53	919	0,594
Actua Encounters: Output **	0,08	0,03	3,07	936	0,002
(1 Participant)	0,24				
(1 Item)	0,22				
(Residual)	0,75			R ²	= 0.33

Exposure to words ⇒ Productive test

	β	SE	F	df	р	
(Intercept)	-0,34	0,23	-1,46	362	0,144	
Dialogue System ***	-0,32	0,08	-4,13	163	0,000	
Dialogue (vs. Ctrl) *	0,55	0,23	2,42	496	0,016	
Score at pretest ***	0,37	0,03	11,39	765	0,000	
Vocabuly size score **	0,11	0,04	2,73	141	0,007	
Potential Encounters: Input °	0,17	0,09	1,98	8	0,081	
Potential Encounters: Output n.s.	-0,03	0,12	-0,20	11	0,842	
Actual Encounters: Input *	-0,07	0,03	-1,98	631	0,048	
Actual Encounters: Output ***	0,14	0,04	3,38	730	0,001	
(1 Participant)	0,19					
(1 Item)	0,21					
(Residual)	0,82			$R^2 =$	$R^2 = 0.33$	


Results & discussion

Output encounters with words

It confirms the actual uses/output encounters influence both receptive and productive acquisition.

When accounting for output encounters, other coefficients go negative (e.g. Dialogue system) because their specificity is 'absorbed' by the number of uses.

Quantity of in-task production

Discussion

Limitations

- Somewhat coarse automated processing for detection of encounters: can be refined substantially: include formulaic sequences that are tested in productive part.
- Suboptimal items, esp. in productive test, with very low or very high facility scores.
- Very "unadventurous/passive" behaviour in many participants from both conditions (fulfilling the microtasks like exercises):

Due to school context? age factor? presentation of the instructions?

→ Probably reduced the "interactivity" of the Dialogue system condition a lot.

Interaction-based vocabulary acquisition

How do output and interaction help lexical development?

Dialogue systems for SLA research

Definition, summarized typology, research questions

Randomized controlled experiment

Groups, learners' profiles, instruments, intervention

Results and discussion

Mixed-effects models, effects of encounters in input/output

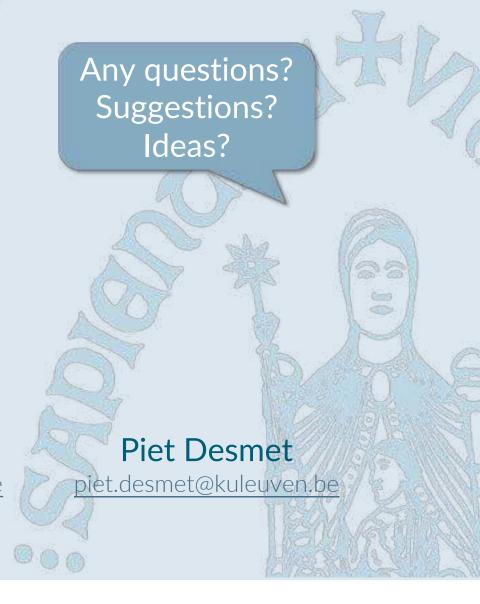
Conclusions

Interactivity and incidental vocabulary acquisition

- Effectiveness, in particular for receptive acquisition:
 Dialogue system > Dial. completion > Business-as-usual
- But effectiveness differences between *Dial. system* and *Dial.* completion not as strong as expected (worth the technological effort?), although it could be explained by the limited involvement of the participants, which could be due to a series of contextual and instructional factors.
- Actual number of uses (encounters) in production are a highly significant predictor of word learning, much higher than number of input encounters.

Perspectives

Dialogue systems as an SLA research environment


Dialogue systems offer fully controllable and reproducible interaction: opportunities to monitor and to alter infinity of details.

Experimental testing (A/B testing) with different types of tasks, instructions, feedback, exposure, reactions...

Thank you! Dank u! Merci! ¡Gracias!

Serge Bibauw serge.bibauw@kuleuven.be

Thomas François thomas.françois@uclouvain.be

References

Bibauw, S., François, T., & Desmet, P. (2019). Discussing with a computer to practice a foreign language: Research synthesis and conceptual framework of dialogue-based CALL. *Computer Assisted Language Learning*, 0(0), 1–51. https://doi.org/10.1080/09588221.2018.1535508

de Vos, J. F., Schriefers, H., Nivard, M. G., & Lemhöfer, K. (2018). A meta-analysis and meta-regression of incidental second language word learning from spoken input. *Language Learning*, 68(4), 906–941. https://doi.org/10.1111/lang.12296

De Wilde, V., Brysbaert, M., & Eyckmans, J. (2019). Learning English through out-of-school exposure. Which levels of language proficiency are attained and which types of input are important? *Bilingualism: Language and Cognition*, 1–15. https://doi.org/10.1017/S1366728918001062

Elgort, I., Brysbaert, M., Stevens, M., & Assche, E. V. (2018). Contextual word learning during reading in a second language: An eye-movement study. *Studies in Second Language Acquisition*, 40(2), 341–366. https://doi.org/10.1017/S0272263117000109

Ellis, R., & He, X. (1999). The roles of modified input and output in the incidental acquisition of word meanings. *Studies in Second Language Acquisition*, 21(2), 285–301.

Newton, J. (1995). Task-based interaction and incidental vocabulary learning: A case study. Second Language Research, 11(2), 159–176. https://doi.org/10.1177/026765839501100207

Peters, E., Noreillie, A.-S., Heylen, K., Bulté, B., & Desmet, P. (2019). The impact of instruction and out-of-school exposure to FL input on learners' vocabulary knowledge in two languages. *Language Learning*, 69(3). https://doi.org/10.1111/lang.12351

Peters, E., Velghe, T., & Van Rompaey, T. (2019). The VocabLab tests: The development of an English and French vocabulary test. *ITL* - *International Journal of Applied Linguistics*, 170(1), 53–78. https://doi.org/10.1075/itl.17029.pet