Desarrollo de la fluidez oral en lengua extranjera: experimento de medición semiautomática de los efectos de aprendizaje

Serge Bibauw1,2,3
Louis Escouflaire3
Thomas François3
Piet Desmet2

1 Universidad Central del Ecuador
2 ITEC, imec research group at KU Leuven
3 CENTAL, UCLouvain
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
Short-term treatment effect on fluency
Limits and perspectives
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
Short-term treatment effect on fluency
Limits and perspectives
Theoretical context

Second language acquisition and testing

Knowledge-based approach

Knowledge (Declarative)

→ Tests

⇒ Vocabulary size test
(very efficient proxy of proficiency)
(Milton, 2013)

Task-based approach

Skill (Proficiency / Procedural)

→ Performance
(ability to express something)

Proficiency as
Complexity + Accuracy + Fluency
(Housen et al, 2012; Michel, 2017)

Trade-off between complexity, accuracy & fluency (theory)
Research context

Effects of dialogue systems on fluency development.

Interactive practice with a dialogue system, in this case, integrated within an educational game.

Objective: develop fluency in A1-A2 learners.

Randomized controlled experiment with young Flemish learners of French (N=215) in Belgium.
Any application or system allowing to maintain a dialogue [immediate, synchronous interaction] [written or spoken] with an automated agent [chatbot, talking robot, automated personal assistant, conversational agent, non-player character in a video game...] [tutorial CALL (≠ computer-mediated communication)] for language learning purposes.
Conversations:

Conversation 1: After the storm - Meet Sensei and find out what happened and where you are.
Meilleur score: 828

Conversation 2: Meet Baldog - Meet Baldog and ask him for help.
Meilleur score: 0

Conversation 3: The snails - Vincent - Get to know the snails family
Meilleur score: 426

Conversation 4: The snails - Angélique - Get to know the mother of the snails family
Meilleur score: 0

Conversation 5: The snails - Claudette - Get to know one of the triplets of the snails family
Meilleur score: 0

Conversation 6: Return to Baldog - Go back to Baldog and tell him his problem is solved.
Microtasks to guide the conversation

Corrective feedback

Contextualization

Gamification

Free written input

Scaffolding

Conversation: The snails - Vincent - Get to know the snails family

- **He**: Bien le bonjour! Comment t'appelles-tu?
- **You**: bonjour je m'appelle Marco
- **He**: Enchanté de faire ta connaissance, Rlncl Rln. Rlncl Rln. Ne t'en fais pas, je ne suis pas fou. C'est juste que je répète ton nom pour ne pas l'oublier.
- **You**: Comment tu t'appelles?
- **He**: does not seem to have heard you...
- **You**: Tu t'appelles comment?
- **He**: does not seem to have heard you...
- **You**: Tu t'appelle comment?
- **Correction**: appelle - Vérifiez l'accord entre le pronom « Tu » et le verbe « appelle ».
- **Task accomplished**: Good. That was what we were wondering about.

He: Moi, c'est Vincent. Elle, là-bas, c'est Angélique. Ça, c'est Delphine. Puis on a Georges dans le coin. Et évidemment, on ne peut pas oublier les triplettes : Lisette, Claudette et Yvette. Oh! Et puis le petit là-bas, c'est Louis.
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
Short-term treatment effect on fluency
Limits and perspectives
Theory and state of research

Fluency (Segalowitz, 2010)

Speaking fluency as a multidimensional construct

- **Cognitive fluency** (skill-level)
 - no direct access

- **Utterance fluency** (performance-level)

- **Perceived fluency** (listener perspective)
Theory and state of research

Utterance fluency (Segalowitz, 2010, 2017)

- **Speed fluency**
 - speech rate, articulation rate, syllable duration, length of runs (syllables), duration of runs (sec)… (Bosker et al, 2013; Hilton, 2014; Kormos & Denes, 2004; Götz, 2013…)

- **Breakdown/Pauses**
 - filled pauses: not good differentiator (Cucchiarini et al, 2002…), unrelated to other fluency measures (Segalowitz et al 2017)

- **Repair fluency**: not good differentiator of proficiency (Cucchiarini et al, 2002; Revesz et al 2016; Saito et al 2018; Dumont, 2017…)
Theory and state of research

Fluency metrics

Dozens of possible metrics

Combined with dozens of different operationalizations:

• **silent pause threshold:** in general **250ms** (de Jong & Bosker, 2013; Préfontaine et al, 2016)

• pruning and inclusion criteria for syllables and words

• syllables count

• normalization

• combinations of different denominators, order, etc.

• logarithmic transformations

⇒ Need to **compare these operationalizations**, not only theoretically, but in terms of **empirical adequacy** with the metrics’ **purpose** (here: measure language development)
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
Short-term treatment effect on fluency
Limits and perspectives
Methods

Procedure

1-4 weeks, depending on school schedule
All sessions at school

Pretest
- Computer-delivered spoken interview
- Target vocabulary test
- Vocabulary size test

In-app session (max 50 min): DSys / DCompl

Posttest
- Computer-delivered spoken interview
- Perceptions questionnaire
- Target vocabulary test
4 schools volunteered to participate, with 2-3 classes each:

\[N_{\text{clusters}} = 11 \quad \text{and} \quad N_{\text{participants}} = 215 \quad (208 \text{ complete cases}) \]

Random assignment of classes to 3 conditions (distr. equally across schools):

- **Dialogue System** (experimental): \(n_{\text{D.Sys.}} = 81 \)
- **Dialogue Completion** (‘baseline’): \(n_{\text{D.Compl.}} = 79 \)
- **Control** (‘business-as-usual’): \(n_{\text{control}} = 49 \)

Flemish 2nd year secondary school learners of French (\(M_{\text{age}} = 13.4 \text{ y.o.} \))

L1 = 95.3 % Dutch

L2 = French = first L2, \(M = 3.1 \) years of instruction, mostly at A1 level

\(M_{\text{score}} \) in productive vocabulary size test = 3.6/30 in 1K frequency band

10 (near-)native speakers of French excluded (final \(N = 198 \))
Intervention · Dialogue system

LanguageHero, dialogue-based game for young learners

Codeveloped with Leuven-based start-up *Linguineo*.
(Main) target audience: teenagers (10-14).

Prototype developed for French for Dutch-speaking learners.

Task-based free conversational written interaction.
Intervention · Conditions
Interactive vs. static dialogue

Compare:

(A) fully interactive, immediate/synchronous dialogue system

(B) classic, asynchronous dialogue completion task

Conditions with identical tasks, input, output opportunities, feedback and scaffolding.
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
Short-term treatment effect on fluency
Limits and perspectives
Computer-delivered speaking interview

Automated speaking test

- Individual, in-class & simultaneous, with headset

24 questions

- from basic (“How are you?”) to questions targeting specific communicative functions (“Can you describe your French teacher?”)

Question oral + written presentation,

then automatically starts recording,
30 sec limits or “Next question” button
Methods · Instruments

Computer-delivered speaking interview
Methods

Vocabulary Size Test

Productive Vocabulary Size Test

Developed and validated for VocabLab project (Peters et al, 2019a; Noreillie, 2019)

Gap-filling in L2 with given first letter + L1 translation (**Productive**)

60 items (< frequency bands 1K + 2K)

Computer-delivered, made **adaptive**

(30 1K items, then if > 50% correct: + 30 2K items)

Used as a proxy of L2 proficiency (at pretest only)
(used as covariate in MEM)
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
Short-term treatment effect on fluency
Limits and perspectives
Methods

Processing of spoken responses

±11 000 single audio files (N=215 * 24 questions * pre+post)

• Automated speech recognition (Google Cloud Speech-to-text) for transcription
• Manual correction of transcriptions +
• Annotation of filled pauses, L1/LF use, meta-discourse, etc. with tagging layer
 • allowed to then include/exclude certain features for metrics variants
Methods

Computation of fluency metrics

- Automated detection of pauses (Praat syllable nuclei detection script, de Jong & Wempe, 2009)
- Alternate methods for silent pause detection, and syllables/length count.
- Automated computation of syllables from transcript, with variations in pruning.
- Computation of all possible variants of every temporal fluency metric.
Methods

Composite fluency index

To obtain a single, aggregate/composite index of temporal utterance fluency:

- **Principal Component Analysis (PCA)**
- Selecting first component (76% of variance explained)
- Checking loadings of most important fluency variables
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
Short-term treatment effect on fluency
Limits and perspectives
Results

Fluency metrics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation with Vocabulary Size Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of runs in syllables (pruning all proper nouns)</td>
<td>0.58</td>
</tr>
<tr>
<td>Length of runs in syllables (pruning non target)</td>
<td>0.57</td>
</tr>
<tr>
<td>Length of runs in syllables (no pruning)</td>
<td>0.57</td>
</tr>
<tr>
<td>Length of runs in syllables (alternate syllable count)</td>
<td>0.56</td>
</tr>
<tr>
<td>Speech rate (pruning all proper nouns)</td>
<td>0.55</td>
</tr>
<tr>
<td>Speech rate (no pruning)</td>
<td>0.53</td>
</tr>
<tr>
<td>Number of syllables (pruning all PN)</td>
<td>0.46</td>
</tr>
<tr>
<td>Number of words (pruning all PN)</td>
<td>0.45</td>
</tr>
<tr>
<td>Articulation rate (inverse syllable duration)</td>
<td>0.43</td>
</tr>
<tr>
<td>Length of runs in seconds (pruning)</td>
<td>0.36</td>
</tr>
<tr>
<td>Speech/Time ratio</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Results

Fluency metrics

\[t(172) = 9.38, \ p = < 0.001, \ r_{\text{Pearson}} = 0.58, \ CI_{95\%} [0.47, 0.67], \ n_{\text{pairs}} = 174 \]

In favor of null: \(\log_e(BF_{01}) = -32.83 \), \(r_{\text{Cauchy}}^{JZS} = 0.71 \)
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
- Fluency metrics correlated with proficiency
- Short-term treatment effect on fluency
- Limits and perspectives
Results: effects on Fluency (length of runs)

\[d = 0.42 \]

\[p = 0.0095 \]

\[p = 0.0199 \]

\[p = 0.1226 \]
Results: effects on Fluency (length of runs)

- Interactive Dialogue System: p = 0.0095 **
- Dialogue Completion Task: p = 0.0199 *
- Control: p = 0.1226 ns

*(ns) not significant
Results: effects on Fluency (speech rate)

- Interactive Dialogue System: $p = 0.00017^{***}$
- Dialogue Completion Task: $p = 7.7 \times 10^{-5}^{***}$
- Control: $p = 0.04701^*$

Comparison:
- Interactive Dialogue System vs. Dialogue Completion Task: 0.17^{ns}
- Interactive Dialogue System vs. Control: 0.14^{ns}
Results: effects on

Fluency (PC1)

- $d_{DSys} = 0.54$
- $d_{DSys \text{ vs Ctrl}} = 0.17$
- $d_{Ctrl} = 0.42$

No difference

DSys vs DCompl

- $p = 0.0017 \ **$
- $p = 0.0024 \ **$
- $p = 0.1206 \ n.s.$

Interactive Dialogue System

- Timing: $d_{DSys} = 0.54$
- Timing: $d_{DSys \text{ vs Ctrl}} = 0.17$
- Timing: $d_{Ctrl} = 0.42$

Dialogue Completion Task

- Timing: $d_{DSys} = 0.54$
- Timing: $d_{DSys \text{ vs Ctrl}} = 0.17$
- Timing: $d_{Ctrl} = 0.42$

Control

- Timing: $d_{DSys} = 0.54$
- Timing: $d_{DSys \text{ vs Ctrl}} = 0.17$
- Timing: $d_{Ctrl} = 0.42$
Discussion

Fluency

Very small effect ($d_{DSys \ vs \ Ctrl} = 0.17$), when controlled for “base development” and training to the test effect,

but very short treatment (2h) → expected (effect on general L2 speaking proficiency by written practice)

No difference between interactive and non-interactive system.
Fluency development in a foreign language: semi-automated measurement of learning gains

Context
Performance-based proficiency assessment
Dialogue systems for language learning

Measuring fluency development
Utterance fluency, fluency metrics and evaluation

Methods
Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion
Fluency metrics correlated with proficiency
- Short-term treatment effect on fluency
Limits and perspectives
Conclusions

Effects of dialogue-based CALL

Very small effect on fluency

Still quite promising that possible to observe an effect on fluency on such a small timeframe.
Perspectives
Automated speaking fluency testing

- Fine-grained evaluation of fluency metrics via automated comparison
- Simultaneous individual speaking test for >30 learners
- Precise automated recording of fluency variables
- Almost fully automated processing pipeline

⇒ Methodological innovation
Dialogue systems offer fully controllable and reproducible interaction: opportunities to monitor and to alter infinity of details.

Experimental testing (A/B testing) with different types of tasks, instructions, feedback, exposure, reactions...

→ Opportunity to compare writing fluency and speaking fluency in similar settings
Thank you!
Merci !
Dank u!
¡Gracias!

Serge Bibauw
sbibauw@uce.edu.ec
Louis Escouffaire
Thomas François
Piet Desmet

Descargar estas diapositivas
http://bit.do/asefie1
More info: https://serge.bibauw.be