

Frequency of occurrence in output helps predict incidental vocabulary learning

Serge Bibauw · Thomas François · Piet Desmet

Universidad Central del Ecuador · UCLouvain · KU Leuven

AAAL 2023 Conference Portland, OR March 20, 2023

Frequency of occurrence

Experiment: dialogue system

Results: incidental effects

Frequency of occurrence

Experiment: dialogue system

Results: incidental effects

Incidental vocabulary learning and interaction

- Involvement-Load Hypothesis (Laufer & Hulstijn, 2001)
 Factors for word retention: need, evaluation, search (Yanagisawa & Webb, 2021a)
 - Word use for completing the task (++) (Newton, 1995)
 - Interactionally modified output (++) (Ellis & He, 1999)
- Involvement-Load Hypothesis Plus (Yanagisawa & Webb, 2021b)
 - Varied use in sentence (++) and composition (+++)
- Meta-analysis of incidental word learning from spoken input $^{(\text{de Vos, Schriefers, Nivard \& Lemhöfer, 2018})}$ Interactive tasks (d+0.73) > Non-interactive tasks (d+0.10) > Input only
- Interactive sources of exposure: highest predictors for vocabulary size: online/games $(\beta=.39^{***}, \text{Peters et al., 2019})$ social media $(\beta=.29^{****})$, speaking L2 $(\beta=.13^{****}, \text{De Wilde et al., 2019})$

Frequency of occurrence (in input)

- Well-known factor influencing incidental vocabulary acquisition (Webb, 2020; Uchihara et al., 2019)
- $m egin{aligned}
 m egin{a$
- But no study about frequency in *output*.

• RQ:

How much do *productive* word uses help understand and predict incidental word learning?

Frequency of occurrence

Experiment: dialogue system

Results: incidental effects

Intervention:Dialogue system

- Developed in 4 BC (before ChatGPT)
- 'Designable' and controllable spontaneous interaction.
- Full logging of all messages read and written in the system
 - 48 353 messages577 494 words
- Alternate condition:
 Static dialogue completion task

Participants

- Multisite: 4 Flemish schools, with 2-3 classes each
 - \circ N = 215 $N_{
 m classes}=11$
 - \circ Here, focus on the dialogue system condition: $n_{
 m ds}=81$
- Teenagers: 12-13 y.o. (2nd grade of sec. school, ~8th grade)
- **L1** = 95% Dutch
- L2 = French (first L2 learned at school)
 M = 3.1 years of French instruction
 Mostly at A1 level (beginners)
- In "classroom" (school computer lab)

Instrument: Target vocabulary test

- Target words: selected because of (expected) occurrence, but no focus of instruction
 - → **Incidental learning** only
- At pre- & posttest, randomized, identical tests
- 50 target items
- 1. **Receptive** part: **meaning recognition**25 isolated words

 potager
- 2. Productive part: form recall25 'formulaic sequences' in gap-filling

heaveoun d'imagination

Frequency of occurrence

Experiment: dialogue system

Results: incidental effects

Large variations in learning gains

Receptive test

Productive test

Input encounters contribute to both receptive and productive knowl.

Repeated productive use has a stronger/faster effect

Mixedeffects model

 $R^2 = .66$

FIXED EFFECTS	LOG-ODDS	SE	95% CI	z	p
(Intercept)	-2.56	0.35	[-3.25, -1.87]	-7.26	<.001 ***
Dialogue-based CALL ^d = 1	0.15	0.26	[-0.36, 0.67]	0.58	.563
Dialogue System ^e = 1	-0.18	0.21	[-0.60, 0.24]	-0.86	.393
$Knowledge^a$ = Productive	-1.49	0.30	[-2.07, -0.90]	-5.00	<.001 ***
Frequency occurrence in input ^b	0.14	0.02	[0.09, 0.18]	6.01	<.001 ***
Frequency occurrence in output	0.26	0.03	[0.20, 0.32]	8.02	<.001 ***
Pretest score	2.34	0.09	[2.16, 2.53]	24.98	<.001 ***
Vocabulary size score	4.69	0.99	[2.75, 6.63]	4.74	<.001 ***
Knowledge ^a × Occurrence outpu	ut ^c -0.16	0.04	[-0.24, -0.07]	-3.67	<.001 ***
RANDOM EFFECTS	SD		GROUPING	n	ICC
Item	1.33		Items	44	.33
Subject:(Class:School)	0.47		Subjects	164	.04
Class:School	0.25		Classes	11	.01
School	0.21		Schools	4	.01
Residual	1.00				

Output instances best predict productive learning

OCCURRENCE COUNT	М	SD	$r_{ m Receptive}$	$r_{ m Productive}$
Hypothetical input encounters	5.82	5.63	.24 ***	.05 n.s.
Actual input encounters (dialogue)	2.55	3.15	.26 ***	.10 ***
Actual input encounters (dialogue + models)	3.58	4.51	.27 ***	.24 ***
Hypothetical output opportunities	2.05	2.76	.17 ***	.17 ***
Actual output opportunities (models)	1.03	2.19	.21 ***	.25 ***
Actual output instances (messages)	1.16	2.12	.25 ***	.28 ***

^{***} p < .001. n.s. = p > .05.

 $r_{\rm Receptive}$ = correlation with meaning recognition test.

 $r_{\text{Productive}}$ = correlation with form recall test.

Frequency of occurrence

Experiment: dialogue system

Results: incidental effects

Model of incidental productive vocabulary learning

Conclusions

- Productive exposure is complementary to receptive exposure.
- Confirms the need for productive practice for productive knowledge. (e.g., Yanagisawa & Webb, 2021)
- In summary:
 - Frequency in *input* ⇒ Word learned
 - but even more:
 Frequency in *input* ⇒ Frequency in *output* ⇒ Word learned

Limitations

- System: story-first design
 - → explicit microtask prompts
 - → reduced user control
 - $\circ \rightarrow$ limited difference across conditions (exp. condition less interactive than foreseen)

Instruments:

- o *I don't know* option: probably better to avoid (Stoeckel et al., 2016)
- many items with too limited/no exposure in the end
- excessive difficulty of target vocabulary test (form recall)

Thanks! Questions & suggestions?

Serge Bibauw

serge.bibauw@uclouvain.be Tw: @SergeBibauw

Slides in PDF:

