

Automatizing L2 fluency measurement

Validity and developmental sensitivity of temporal fluency metrics variations

Serge Bibauw · Louis Escouflaire Thomas François · Piet Desmet

U. Central Ecuador · UCLouvain · KU Leuven

AlLA 2021 - Symp. Interdisciplinary approaches to L2 fluency
August 18, 2021

Automatizing L2 fluency measurement

Validity and developmental sensitivity of temporal fluency metrics variations

• Why?

- for autonomous language learning apps,
 automatizing elicitation and measurement of fluency.
- o for dynamic, continuous, non-instrusive assessment.

• How?

- autonomous speech test
 + automatized & semi-automatized fluency metrics
- compare metrics and operationalizations,
- validate against proficiency
- compare developmental sensitivity

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

L2 fluency

(Segalowitz, 2010)

- Cognitive fluency
- Perceived fluency
- Utterance fluency

L2 fluency

(Segalowitz, 2010)

- Cognitive fluency
- Perceived fluency
- Utterance fluency (performance)
 - Speed fluency
 - Breakdown fluency
 - Repair fluency

Utterance fluency & L2 proficiency

- Often compared to Perceived fluency (Saito et al., 2018; Suzuki et al., 2021)
- Here, interested in relation to **L2 proficiency** (Tavakoli et al., 2020) for
 - Predicting speaking proficiency
 - Fast (initial) rating of learner/user
 - Detecting short-term development
 - ⇒ autonomous language learning apps

Fluency metrics to predict proficiency

- Speed fluency Length/Time (1)
 - o good differentiator between fluent/non-fluent, native/non-native (NS/NNS)

(e.g., Bosker et al., 2013; Hilton, 2014; Götz, 2013; Kahng, 2014)

Speech rate

[# syllables / total time]

- ✓ stable, good predictor for automatization (Detey et al., 2020)
- redundant with Syllable duration/Art. rate? (Segalowitz et al., 2017)

Speed fluency Length/Time (2)

Articulation rate

```
[# syllables / phonation time]
```

- ∘ ✓ unconfounded by silent pauses (de Jong et al., 2020)
- o ? redundant with Syllable duration (Segalowitz et al., 2017)

Syllable duration

```
[phonation time / # syllables]
```

- ✓ sig. differentiator across all fluency levels (Saito et al., 2018, but see Révèsz et al., 2016)
- ∘ ✓ good predictor of perceived fluency (r = .67) (Saito et al., 2018)
- ✓ selected as core fluency measure
- slightly sensitive to short-term L2 learning gains (Segalowitz et al., 2017)

Speed/Breakdown fluency ⇒ Runs ^{Length/Pauses}

- Length of runs (= Syllable run)
 - [# syllables / # silent pauses]
 - ∘ great differentiator between NS/NNS
 - ✓ selected as core fluency measure
 - ∘ ✓ sensitive to short-term L2 learning gains (Segalowitz et al., 2017)
- Duration of runs (= Phonation run) (see also Silent pause rate)
 [phonation time / # silent pauses]
 - ∘ ✓ great differentiator between NS/NNS, fluent/non-fluent (de Jong & Bosker, 2013; Bosker et al., 2013; Segalowitz et al., 2017)
 - ✓ selected as core fluency measure
 - ∘ ✓ sensitive to short-term L2 learning gains (Segalowitz et al., 2017)

Breakdown fluency Pauses/Time

Duration of silent pauses ?

```
[total silent pausing time / # silent pauses]
```

- o ★ not good differentiator (de Jong & Bosker, 2013)

 explained mainly by speaking style (de Jong et al., 2015)
- ✓ selected as core fluency measure, sensitive to short-term L2 learning gains (Segalowitz et al., 2017)
- Filled pauses rate

```
[# filled pauses / total time]
```

- X not good differentiator, unrelated to other fluency metrics (Cucchiarini et al., 2002; Segalowitz et al., 2017)
- Also: Pause location: Mid-/Final-clause pause ratio (discarted temporarily here for technical reasons)

Repair fluency

- False starts, corrections and repetitions
- X not good proficiency differentiator (Cucchiarini et al., 2002; Révèsz et al., 2016; Saito et al., 2018)
- X not predictive of communicative adequacy (Révèsz et al., 2016)
- X not predictive of perceived fluency (Saito et al., 2018)
- Many other metrics...

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

Research design

Participants

- N=164 (initially N=228 but incomplete/problematic data)
- 4 schools, 11 classes
- 12-13 y.o. (2nd grade BE/8th grade US/Year 9 UK)
- L1: Dutch
- L2: French ~A1+→A2
 (but some outliers: up to B2 + heritage speakers)

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

Computer-delivered speech test

- Autonomous simultaneous speaking test
 - Individual, in-class & simultaneous,
 - with headset, in front of indiv. computer
- 24 questions
 - from basic ("How are you?") to questions targeting specific communicative functions ("Can you describe your French teacher?")
- Oral question + written transcription
 - then automatically starts recording
 - 30 sec limit or "Next question" button

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

Automated speech analysis

- Data: >10 000 audio files (wav , 2-30")
 - N=228 * 24 questions * pre+post
- Transcription: automated speech recognition (Google Cloud Speech-to-text)
 - Manual revision of transcriptions
- Manual annotation of filled pauses, L1/LF use, disfluencies...
- Automated detection of silent pauses & phonation time:
 - Praat Syllable Nuclei detection script (de Jong et al., 2020)
 - (Future: automated detection of filled pauses with new v3 script)
- Automated computation of # syllables from transcript
 - with different pruning alternatives

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

Validation of fluency metrics

- Internal consistency
- Comparison of metrics for proficiency (per-participant correlation)
 - Vocabulary Size
 - quick but reliable estimate of L2 proficiency (Noreillie et al., 2018; Milton, 2013)
 - Vocabulary Size Test
 - productive (gap-filling, with 1st letter + L1 translation given)
 - even better correlation with speaking proficiency (r = 0.77 in Koizumi, 2005; r = 0.79 in de Jong et al., 2012)
 - standardized & validated (Noreillie, 2019)
 - 30 words, 1K frequency band (A1)

VS1_6			
Dans une démocrat	ie, c'est l	e p	(volk
VS1_7			
Le général j (o	ordelen)	qu'il n'est	pas néo
VS1_8			
Il a été condamné à	une p	(stra	f) de pri
VS1_9			
La p (verove	rina) de la	a Bastille	a été ur
(ve.ore.	mig) de t		d ctc di

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

Automated estimators vs. Manual annotation

Raw metrics	MAE (accur.)	RMSE	R^2 (consist.)	Cr. $lpha$ (int.cons.)	r_{VS}
Nb of syllables (auto count, manual trscpt)	"truth"			.92	.373
→ Google ASR transcript (auto count)	1.23	2.93	.874	.91	.370
→ Syllable Nuclei Praat script (de Jong et al.)	4.25	7.60	.585	.88	.154

Pruning

Number of syllables Variant / Pruning		SD	Cr. lpha	r_{VS}	$r_{SR ext{-}VS}$
Unpruned (manual transcript)	13.4	5.44	.92	.373	.579
'Meant': - disfluencies (f.pauses, repet., self-corr., meta)		5.10	.92	.443	.597
'Meant', L2-only: – L1/lingua franca words		5.07	.93	.459	.603
'Meant', L2-only, - proper nouns		5.02	.93	.473	.609

- ⇒ Pruning improves the meaningfulness of length-based metrics
- ⇒ 'Harsher' pruning increases predictive power

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

Best predictors of L2 proficiency

- Speech rate? Articulation rate?
- Length of runs? Duration of runs?
- Duration of silent pauses? Silent pauses rate?
- Speech-time ratio?

Length of runs is the best predictor of proficiency

r = 0.628, N = 164

Best predictors of L2 proficiency

 Length of runs (syll. runs), pruned* 	.628	
 Speech rate, pruned 	.609	
 Articulation rate, pruned 	.524	<pre><sr: auto="" due="" lower="" phonation="" possibly="" pre="" quality="" time<="" to=""></sr:></pre>
 Syllable duration⁻¹, pruned 	.473	
 Number of syllables, pruned 	.473	'Raw' metric suprisely useful for this type of speech
 Number of words, pruned 	.463	
 Silent pausing rate⁻¹ 	.428	
 Duration of runs (phon. runs) 	.352	
 Speech-time ratio 	.305	
 Pause duration⁻¹ 	.197	Based on correlation with Vocabulary Size, Pearson's $oldsymbol{r}$

^{*} Pruning: removed disfluencies, repetitions, meta-discourse, L1/LF words, proper nouns

Semi-auto vs. fully automated composite metrics

Metric	Semi-auto, pruned	Fully auto*, ASR-based count	Fully auto*, signal-based ^(deJong)	Fully auto signal alt.
Length of runs	.628	.588	.479	
Speech rate	.609	.585	.461	
Articulation rate	.524	.496	.392	.172
Syllable duration ⁻¹	.473	.283	.473	.106
Number of syllables	.473	.370	.154	
Number of words	.463	.355		
Silent pausing rate ⁻¹			.409	.428
Duration of runs			.338	.352
Speech-time ratio			.269	.305

• Metrics of utterance fluency & proficiency

Data & Methods

- Computer-delivered speech test
- Semi-automatized analysis
- Vocabulary Size for validation

- Comparison of annotations & metrics
- Best predictors of L2 proficiency
- Developmental sensitivity

Developmental Sensitivity of selected Fluency Metrics

Significant, Medium Effect on Speech Rate (partial task repetition effect)

Automatizing L2 Fluency Measurement

- Automated metrics work!
 - Fully automated only slightly less accurate than human transcript (max diff $_r$ = 0.04)
 - ASR-based count of syllables more reliable than syllable nuclei detection (exc. Syll. dur.)
- Harsh **pruning** improves predictive power.
- Best predictors of **L2 proficiency**:
 - Length of Runs > Speech Rate > Artic. Rate >
 Syll. Duration⁻¹ > #Syll. > Silent Pausing Rate⁻¹
- Best developmental sensitivity:
 - Speech Rate > Artic. Rate > Syll. Duration⁻¹ > Length of Runs

Questions, feedback & suggestions welcome!

Serge Bibauw

[sbibauw@uce.edu.ec]

[https://serge.bibauw.be]

Louis Escouflaire

Thomas François

Piet Desmet

Download the slides References & details [https://cutt.ly/fluency]

R scripts: e-mail me!

