

Desarrollo de la fluidez oral en lengua extranjera: experimento de medición semiautomática de los efectos de aprendizaje

Serge Bibauw^{1,2,3} Louis Escouflaire³ Thomas François³ Piet Desmet²

¹ Universidad Central del Ecuador

² ITEC, imec research group at KU Leuven

³ CENTAL, **UCLouvain**

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Theoretical context

Second language acquisition and testing

Knowledge-based approach

Knowledge (Declarative)

 \rightarrow Tests

⇒ Vocabulary size test (very efficient proxy of proficiency) (Milton, 2013)

Task-based approach

Skill (Proficiency / Procedural)

→ Performance (ability to express something)

Proficiency

as

Complexity + Accuracy + Fluency

(Housen et al, 2012; Michel, 2017)

Trade-off between complexity, accuracy & fluency (theory)

Research context

Effects of dialogue systems on fluency dev.

Interactive practice with a dialogue system, in this case, integrated within an educational game.

Objective: develop **fluency** in A1-A2 learners.

Randomized controlled experiment with young Flemish learners of French (N=215) in Belgium

Research context

Dialogue systems for language learning

(Bibauw, François & Desmet, 2019)

Any application or system allowing

to maintain a dialogue

[immediate, synchronous interaction] [written or spoken]

with an automated agent

[chatbot, talking robot, automated personal assistant, conversational agent, non-player character in a video game...]

[tutorial CALL (≠ computer-mediated communication)]

for language learning purposes.

Logged in as sbibauw

Logout

Language Hero

Target language:	fr
Tutor language:	en
nterface Rég	lages

Conversations:

Meilleur score: 0

Conversation 1: After the storm - Meet Sensei and find out what happened and where you are.

Meilleur score: 828

Conversation 2: Meet Baldog - Meet Baldog and ask him for help.

Meilleur score: 0

Conversation 3: The snails - Vincent - Get to know the snails family

Meilleur score: 426

Conversation 4: The snails - Angélique - Get to know the mother of the snails family

Meilleur score: 0

Visit the world

Conversation 5: The snails - Claudette - Get to know one of the triplets of the snails family

Conversation 6: Return to Baldog - Go back to Baldog and tell him his problem is solved.

Conversation: The snails - Vincent - Get to know the snails family

- He: Bien le bonjour! Comment t'appelles-tu?
- You: bonjour je m'appele Marco
- He: Enchanté de faire ta connaissance, Rinc! Rinc. Rinc. Rinc. Ne t'en fais pas, je ne suis pas fou. C'est juste que je répète ton nom pour ne pas l'oublier.

You: Commment tu t'appele?

He does not seem to have heard you...

You: Tu t'appele coment?

He does not seem to have heard you...

Corrective feedback

You: Tu t'appelle comment?

Correction: appelle - Vérifiez l'accord entre le pronom « Tu » et le verbe « appelle ». Task accomplished: Good. That was what we were wondering about.

He: Moi, c'est Vincent. Elle, <u>là-bas</u>, c'est Angélique. Ça, c'est Delphine. <u>Puis</u> on a Georges <u>dans le coin</u>. Et <u>évidemment</u>, on ne <u>peut</u> pas <u>oublier les triplées</u>: Lisette, Claudette et Yvette. Oh! Et <u>puis le petit là-bas</u>, <u>c'est</u> Louis.

Gamification

Current task (2/30):
Say it is nice to meet them.

Microtasks to guide the conversation

Type or say your answer:

Type text..

Free written input

→ Send your reply

We can give you suggestions you can use to come up with an answer:

Scaffolding

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development
 Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Theory and state of research Fluency (Segalowitz, 2010)

Speaking fluency as a multidimensional construct

- Cognitive fluency (skill-level)
 - → no direct access
- Utterance fluency (performance-level)
- Perceived fluency (listener perspective)

Theory and state of research Utterance fluency (Segalowitz, 2010, 2017)

Speed fluency

• speech rate, articulation rate, syllable duration, length of runs (syllables), duration of runs (sec)... (Bosker et al, 2013; Hilton, 2014; Kormos & Denes, 2004; Götz, 2013...)

Breakdown/Pauses

- silent pause rate, silent pause duration... (Bosker et al, 2013; de Jong & Bosker, 2013; Kahng, 2014; Hilton, 2014...)
- filled pauses: not good differentiator (Cucchiarini et al, 2002...), unrelated to other fluency measures (Segalowitz et al 2017)
- Repair fluency: not good differentiator of proficiency (Cucchiarini et al, 2002; Revesz et al 2016; Saito et al 2018; Dumont, 2017...)

Theory and state of research Fluency metrics

Dozens of possible metrics

Combined with dozens of different operationalizations:

- silent pause threshold: in general 250ms (de Jong & Bosker, 2013; Préfontaine et al, 2016)
- pruning and inclusion criteria for syllables and words
- syllables count
- normalization
- combinations of different denominators, order, etc.
- logarithmic transformations

⇒ Need to **compare these operationalizations**, not only theoretically, but in terms of **empirical adequacy** with the metrics' **purpose** (here: measure language development)

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Procedure

Population and group assignment

4 schools volunteered to participate, with 2-3 classes each:

$$N_{\text{clusters}} = 11$$

$$N_{\text{participants}} = 215$$
 (208 complete cases)

Random assignment of classes to 3 conditions (distr. equally across schools):

Dialogue System (experimental):

 $n_{\rm D.Sys.} = 81$ $n_{\text{D.Compl}} = 79$

Dialogue Completion ('baseline'):

Control ('business-as-usual')

 $n_{\rm control} = 49$

Flemish 2^{nd} year secondary school learners of French ($M_{age} = 13.4$ y.o.)

L2 = French = first L2, M = 3.1 years of instruction, mostly at A1 level $(M_{\text{score}} \text{ in productive vocabulary size test} = 3.6/30 \text{ in 1K frequency band})$ 10 (near-)native speakers of French excluded (final N = 198)

Intervention · Dialogue system

LanguageHero, dialogue-based game for young learners

Codeveloped with Leuven-based start-up Linguineo.

(Main) target audience: teenagers (10-14).

Prototype developed for French for Dutch-speaking learners.

Task-based free conversational written interaction.

Intervention · Conditions

Interactive vs. static dialogue

Compare:

- (A) fully interactive, immediate/synchronous dialogue system
- (B) classic, asynchronous dialogue completion task

Conditions with identical tasks, input, output opportunities, feedback and scaffolding.

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Methods · Instruments

Computer-delivered speaking interview

Automated speaking test

Individual, in-class & simultaneous, with headset

Question oral + written presentation,

then **automatically starts recording**, 30 sec limits or "Next question" button

Methods · Instruments

Computer-delivered speaking interview

Vocabulary Size Test

Productive Vocabulary Size Test

Developed and validated for VocabLab project (Peters et al, 2019a; Noreillie, 2019)

Gap-filling in L2 with given first letter + L1 translation (<u>Productive</u>)

60 items (< frequency bands 1K + 2K)

Computer-delivered, made <u>adaptive</u> (30 1K items, then if > 50% correct: + 30 2K items)

Used as a proxy of L2 proficiency (at pretest only) (used as covariate in MEM)

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview
 Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Processing of spoken responses

±11 000 single audio files (N=215 * 24 questions * pre+post)

- Automated speech recognition (Google Cloud Speech-to-text) for transcription
- Manual correction of transcriptions +
- Annotation of filled pauses, L1/LF use, metadiscourse, etc. with tagging layer
 - allowed to then include/exclude certain features for metrics variants

Computation of fluency metrics

- Automated detection of pauses (Praat syllable nuclei detection script, de Jong & Wempe, 2009)
- Alternate methods for silent pause detection, and syllables/length count.
- Automated computation of syllables from transcript, with variations in pruning.
- Computation of all possible variants of every temporal fluency metric.

Composite fluency index

To obtain a single, aggregate/composite index of temporal utterance fluency:

- Principal Component Analysis (PCA)
- Selecting first component (76% of variance explained)
- Checking loadings of most important fluency variables

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview
Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Results

Fluency metrics

Variable	\rightarrow Correlation with Vocabulary Size Test	r
Length of runs in syllables (pruning all proper nouns)		0,58
Length of runs i	n syllables (pruning non target)	0,57
Length of runs i	n syllables (no pruning)	0,57
Length of runs i	n syllables (alternate syllable count)	0,56
Speech rate (pruning all proper nouns)		0,55
Speech rate (no	pruning)	0,53
Number of syllables (pruning all PN)		0,46
Number of word	ds (pruning all PN)	0,45
Articulation rate (inverse syllable duration)		0,43
Length of runs in seconds (pruning)		0,36
Speech/Time ra	tio	0,26

Results

Fluency metrics

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency Short-term treatment effect on fluency Limits and perspectives

Fluency (length of runs)

Fluency (length of runs)

Fluency (speech rate)

Fluency (PC1)

Discussion

Fluency

- **Very small** effect ($d_{DSys \ vs \ Ctrl} = 0.17$), when controlled for "base development" and training to the test effect,
- but very **short treatment** (2h) → expected (effect on general L2 speaking proficiency by written practice)
- No difference between interactive and noninteractive system.

Context

Performance-based proficiency assessment Dialogue systems for language learning

Measuring fluency development

Utterance fluency, fluency metrics and evaluation

Methods

Computer-delivered spoken interview Automated analyses for fluency measurement

Results and discussion

Fluency metrics correlated with proficiency

Short-term treatment effect on fluency Limits and perspectives

Conclusions

Effects of dialogue-based CALL

Very small effect on **fluency**

Still quite promising that possible to observe an effect on fluency on such a small timeframe.

Perspectives

Automated speaking fluency testing

Fine-grained evaluation of fluency metrics via automated comparison

Simultaneous individual speaking test for >30 learners

Precise automated recording of fluency variables

Almost fully automated processing pipeline

⇒ Methodological innovation

Perspectives

Dialogue systems as a research environment

Dialogue systems offer **fully controllable and <u>reproducible</u> interaction**: opportunities to monitor and to alter infinity of details.

Experimental testing (A/B testing) with different types of tasks, instructions, feedback, exposure, reactions...

→ Opportunity to compare writing fluency and speaking fluency in similar settings Thank you! Merci! Dank u! ¡Gracias!

Serge Bibauw sbibauw@uce.edu.ec Louis Escouflaire Thomas François Piet Desmet

Descargar estas diapositivas

http://bit.do/asefie1

More info: https://serge.bibauw.be