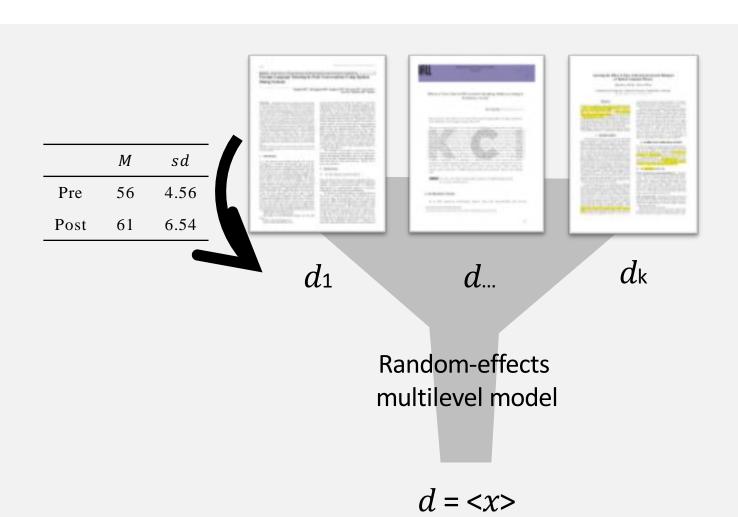
"Hey Siri, can I learn English by talking to you?"

Insights from a multilevel meta-analysis on the effectiveness of dialogue-based CALL

Serge Bibauw
Wim Van den Noortgate
Thomas François
Piet Desmet

Dialogue-based CALL



Apple Siri

duolingo bots You should choose the polka dot shirt All right! Which shoes do you like? zapatos В

Meta-analysis of effectiveness studies

Insights from a multilevel meta-analysis on the effectiveness of dialogue-based CALL

Object: dialogue-based CALL

Dialogue systems, chatbots, agents

Methods: meta-analysis

Studies collection and selection, effect sizes calculation and multilevel modeling

Results: effectiveness for L2 learning

General effectiveness

Relative effects per population, treatment characteristics and outcome variables

Insights from a multilevel meta-analysis on the effectiveness of dialogue-based CALL

Object: dialogue-based CALL

Dialogue systems, chatbots, agents

Methods: meta-analysis

Studies collection and selection, effect sizes calculation and multilevel modeling

Results: effectiveness for L2 learning

General effectiveness
Relative effects per population, treatment characteristics and outcome variables

Dialogue-based CALL

Dialogue-based CALL refers to any application or system allowing,

to maintain a dialogue

[immediate, synchronous interaction] [written or spoken]

with an automated agent

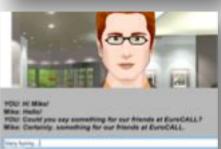
[tutorial CALL (≠ CMC)]

for language learning purposes.

Dialogue-based CALL Typology of systems

(Bibauw et al, under review)

Form-focused dialogue systems


Explicit constraints on meaning, focus on form/forms

e.g., ICALL intelligent language tutors, and Computerassisted pronunciation training (CAPT) systems

Goal-oriented dialogue systems

Contextual constraints (task, situated conversation...), mostly focus on meaning and interaction e.g., Conversational agents in virtual worlds

Reactive dialogue systems

Free, user-initiated, open-ended dialogue e.g., Chatbots, and personal assistants

Dialogue-based CALL Recent evolutions

Rich history of studies & systems:

- First attempts in the 80s (Underwood 1982, 1984)
- Intelligent Language Tutors developed in the 90s (Holland et al, 1995)
- Efforts with speech and dialogue in the 2000s (Raux & Eskenazi, 2004; Seneff et al, 2007; Morton et al 2012)
- Principled technological convergence more recently (Petersen, 2010; Wilske, 2015)

But nearly all systems remained internal, research-only prototypes, never made accessible to the public.

→ No comparability, no replicability

But, recently, major advances towards publicly available tools (Duolingo Bots, Alelo Enskill, ETS HALEF) and joint efforts

between industry and researchers to compare the systems and establish common ground (Sydorenko et al, 2018)

Insights from a multilevel meta-analysis on the effectiveness of dialogue-based CALL

Object: dialogue-based CALL

Dialogue systems, chatbots, agents

Methods: meta-analysis

Studies collection and selection, effect sizes calculation and multilevel modeling

Results: effectiveness for L2 learning

General effectiveness
Relative effects per population, treatment characteristics and outcome variables

Meta-analysis of effectiveness studies

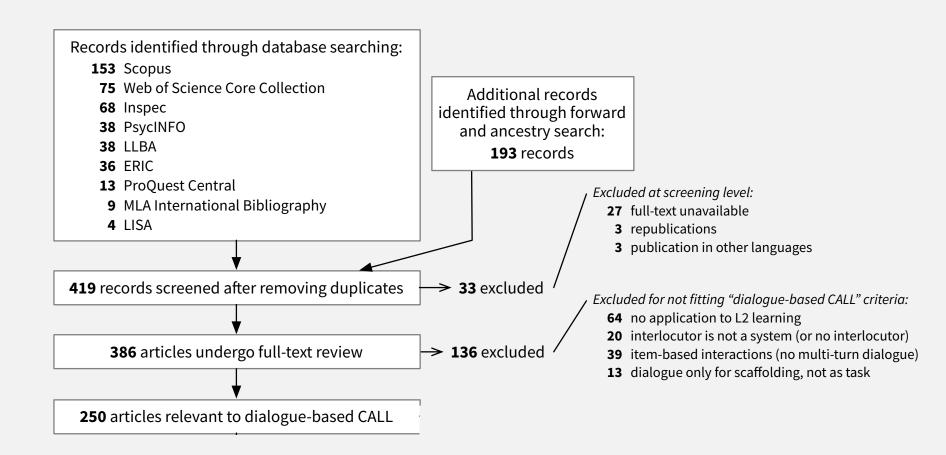
Aggregate results from multiple experimental studies

Treat each study as a subject

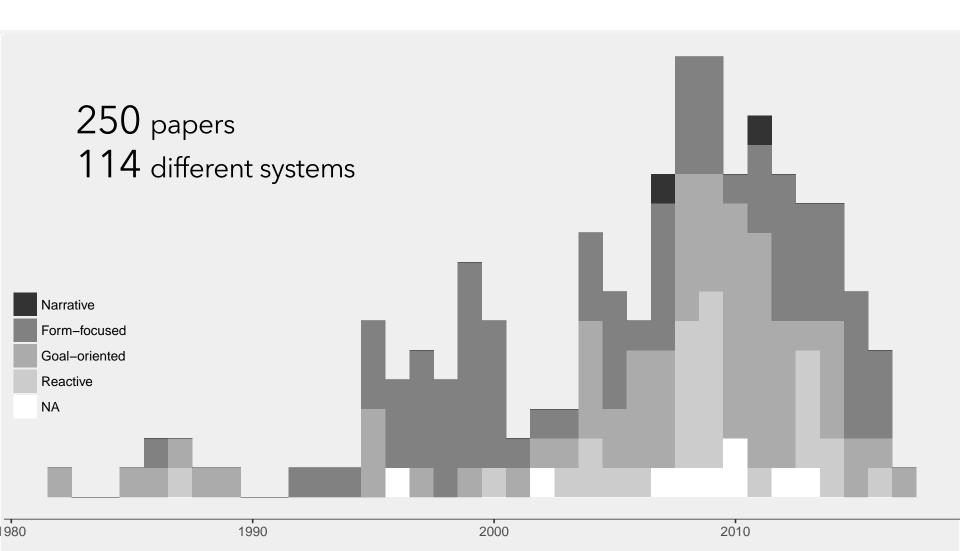
Get a more powerful, generalizable, stable and precise idea of the effectiveness of dialogue-based CALL on language learning

Analyzing certain moderator variables to identify tendencies inside the data

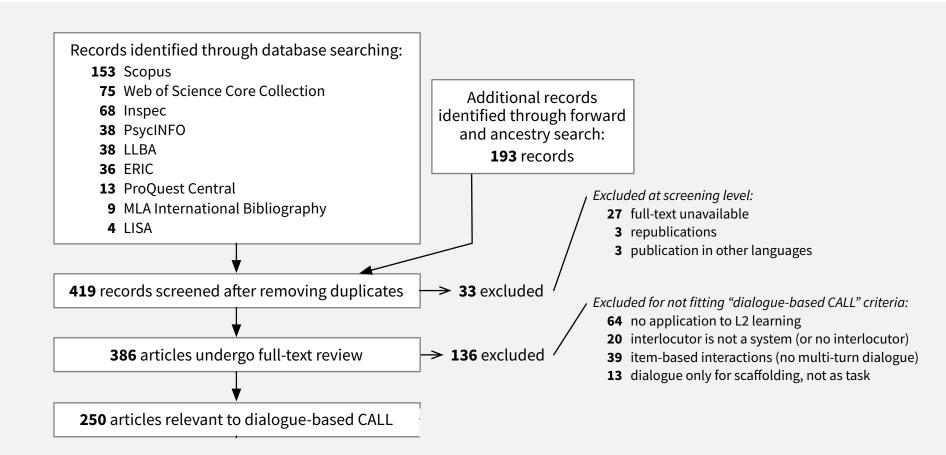
Meta-analysis Search & collection process

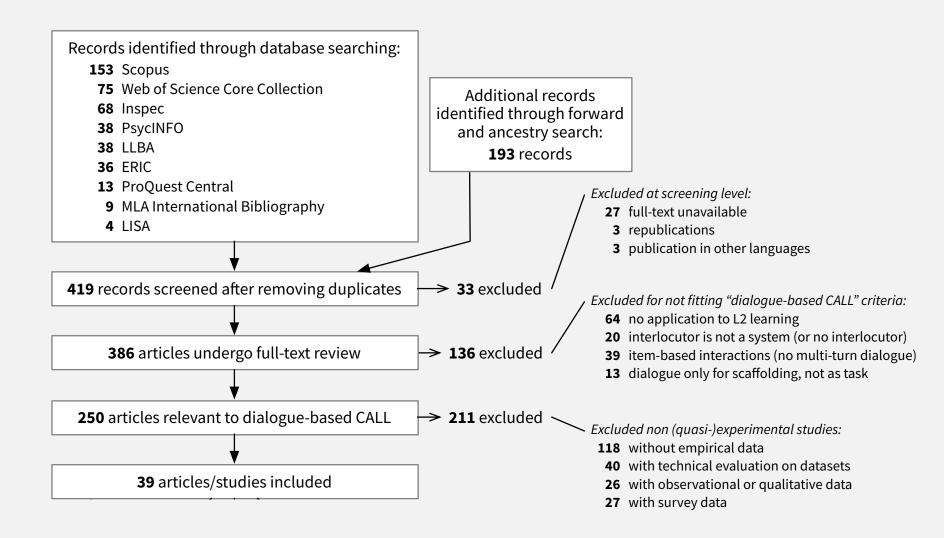

1. Database search in Web of Science, Scopus, ProQuest...

Search syntax:
 (chatbot / chat bot / chatterbot /
 conversational agent / conversational companion
 / conversational system / dialog* system /
 dialog* agent / dialog* game / pedagogical agent
 / human-computer dialog* / dialog*-based) +
 ((language / English) (learning / teaching /
 acquisition) / (second / foreign) language / L2
 / EFL / ESL / ICALL)


- 2. Ancestry search Older publications cited by ref
- **3. Forward** citations New publications citing ref

Note on journal search: 40/250 publications from the 4 major CALL journals (19 CALL, 13 CALICO J., 4 ReCALL, 4 LL&T)


Meta-analysis Inclusion/exclusion process


Studies on dialogue-based CALL

Meta-analysis Inclusion/exclusion process

Meta-analysis Inclusion/exclusion process

Coding scheme

	system	dep_var	proficiency_level	n_treatment	m_t_pre	n_t_post
2012	PORY	Comprehension	A1	21	10,9500000	10.6700000
1999	Conversie	Comprehension	(NA)	9	T3.0000000	75,0000000
2014	PORY	Accuracy	mixed	25	-0.3081438	-0.2611765
2012	PORY	Accuracy	A1	21	31.6200000	40.6200000
2016	IVELL	Accuracy	A2	10	-0.0676000	-0.0300000
2013	CALL-SLT	Accuracy	A1	12	0.0000000	22.8876200
2016	IVELL	Complexity	A2	10	0.4160000	0.6920000
2012	PONY	Fluency	A1	21	33.5700000	47,4800000
2014	PONY	Fluency	ntxed	25	136.3000000	170.0000000
2016	IVELL	Fluency	A2	10	-0.4180900	-0.2620000
2011	[Wilske2]	Fluency	nixed	- 6	0.5700000	0.6890000
2014	[Wilske2]	Fluency	mixed	7	8.8200000	0.8600000
2011	[Wilske2]	Fluency	mixed	- 6	2.0500000	2,1900000
2014	[Wilske2]	Fluency	mixed	7	2.3906000	2.4600000
2016	Indigo	Proficiency	A1	20	64.5000000	112.5000000
	1999 1014 1012 1016 1013 1016 1012 1014 1016 1011 1014 1014	1999 Conversim 1914 POMY 1912 POMY 1916 IVELL 1913 CALL-SLT 1916 IVELL 1912 POMY 1914 POMY 1914 POMY 1916 IVELL 1912 Wilske2] 1914 Wilske2] 1914 Wilske2] 1914 [Wilske2]	1999 Conversim Comprehension 1914 POMY Accuracy 1912 POMY Accuracy 1916 IVILL Accuracy 1918 CALL-SLT Accuracy 1916 IVILL Complexity 1912 POMY Fluency 1914 POMY Fluency 1916 IVILL Fluency 1916 IVILL Fluency 1916 IVILL Fluency 1914 [Wilske2] Fluency	1999 Conversim Comprehension 1904 1914 POMY Accuracy mixed 1912 POMY Accuracy Al 1913 POMY Accuracy Al 1913 CALL-SLT Accuracy Al 1914 Camplexity Al 1915 POMY Fluency Al 1914 POMY Fluency mixed 1914 POMY Fluency mixed 1915 TVILL Fluency mixed 1914 Wilske2 Fluency mixed 1915 Fluency mixed 1916 Fluency mixed 1917 Fluency mixed 1917 Fluency mixed 1918 Fluenc	1999 Conversim Comprehension ONA> 9	1999 Conversim Comprehension 19A> 9 73.0000000 1914 POMY Accuracy mixed 25 -0.3081438 1912 POMY Accuracy Al 21 31.0200000 1916 IVELL Accuracy A2 10 -0.0670000 1913 CALL-SLT Accuracy A1 12 0.0000000 1916 IVELL Complexity A2 10 0.4100000 1912 POMY Fluency A1 21 33.5700000 1914 POMY Fluency mixed 25 136.3000000 1916 IVELL Fluency A2 10 -0.4100000 1916 IVELL Fluency A2 10 -0.4100000 1914 IVELL Fluency mixed 6 8.5700000 1914 IVELSe2 Fluency mixed 7 8.8200000 1914 IVELSe2 Fluency mixed 6 2.0500000 1914 IVELSe2 Fluency mixed 7 2.3900000 1914 IVELSe2 Fluency mixed 7 2.39000000 1914 IVELSe2 Fluency mixed 7 2.39000000000000000000000000000000000000

Publication variables

author, year, publication type, source, sample...

Population variables

context, age, L1, L2 proficiency level

Treatment variables

experimental design, treatment duration (weeks), time on task (hours), number of sessions, treatment density (packed vs. spaced)

System variables

system, target L2, system_type, dialogue_type, primary_modality, corrective_feedback, initiative, embodied_agent, gamified...

Instruments/outcome variables

proficiency/complexity/accuracy/fluency/vocabulary, speaking/writing, specific test

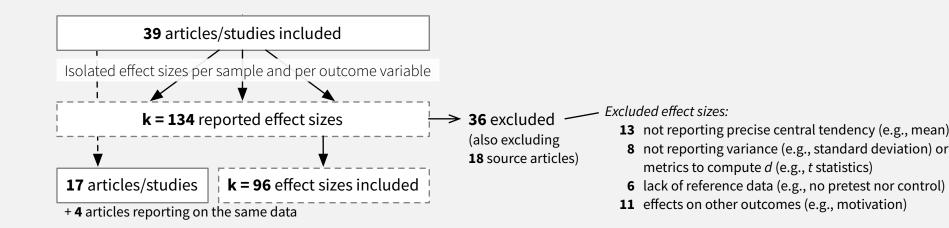
Quantitative results

n, mean, sd (pre/post, experimental/control)

Meta-analysis Computable effect sizes

Effect size: standardized measure of the observed (here, learning) effect

Effect size (*d***)** typically computed over:


- mean
- standard deviation
- **n** (subjects)

for each group/measurement point (or alternate: t-score, etc.)

Not available for all studies (especially older studies)

Asked the authors for raw data (worked for some - thanks to them!)

Meta-analysis Inclusion of individual effect sizes

k = 96 effect sizes

Meta-analysis Effect size calculation

Effect size: standardized measure of the observed (here, learning) effect Usually, in SLA/CALL:

Standardized Mean Difference

Cohen's d (M_{post} - M_{pre} / SD_{pooled}) Hedge's g

	EC		7	
Post	61 (6.2)	57 (7.4)		ŀ
	Exp. Grp M (sd)	Control <i>M</i> (sd)	_	

_		M(sd)				
	Pre	56 (4.3)				
7.	Post	61 (6.2)				
PP						

	Exp. Grp M (sd)	Control <i>M</i> (sd)
Pre	56 (4.3)	54 (5.6)
Post	61 (6.2)	57 (7.4)

ECPP

Standardized Mean Change

Meta-analysis A comparable effect size metrics

Morris & DeShon (2002) offer a solution: comparable metrics across experimental designs (EC / PP / ECPP)

- change metric (aligned on within-group effect)
- raw metric (aligned on between-groups effect)

We selected the raw metric formula:

$$d_{\rm PP} = J(df_{\rm PP}) \left(\frac{M_{\rm post,E} - M_{\rm pre,E}}{SD_{\rm pre,E}} \right)$$

$$d_{\mathrm{ECPP}} = J(df_{\mathrm{ECPP}}) \left(\frac{M_{\mathrm{post,E}} - M_{\mathrm{pre,E}}}{SD_{\mathrm{pre,E}}} - \frac{M_{\mathrm{post,C}} - M_{\mathrm{pre,C}}}{SD_{\mathrm{pre,C}}} \right)$$

Meta-analysis Summary effect size

Model computes a **summary effect** by aggregating all the single study effect sizes

Weighting according to sample size and precision

→ More powerful, more stable, more precise and generalizable than the individual study effect sizes

Meta-analysis Multilevel modeling

Publications report multiple outcome measures (e.g., vocabulary and morphology tests) or multiple sampling groups (e.g., proficiency levels)

Traditional meta-analysis techniques allow only one (independent) effect size per study, but loosing thus all the information on distinct implementations

⇒ Including all the variation without "fooling" the model with non-independent measures:

Multilevel modelling

Aggregates **multiple effects per study**, by adding an intermediate level of *within-*study variation.

Table 1: Levels of multilevel meta-analytic model

	Level	Number of clusters/items	Source of variance
1	Samples	$k = 96 \ (n = 803)$	Random sampling variance
2	Effects sizes	k = 96	Variation within study
3	Studies	l = 17	Variation between studies

Insights from a multilevel meta-analysis on the effectiveness of dialogue-based CALL

Object: dialogue-based CALL

Dialogue systems, chatbots, agents

Methods: meta-analysis

Studies collection and selection, effect sizes calculation and multilevel modeling

Results: effectiveness for L2 learning

General effectiveness

Relative effects per population, treatment characteristics and outcome variables

Reference					w	d [95% CI]
Jia et al 2013	(sample Huiwen JHS)	37	34	├ - -	0.05	5 [-0.38, 0.49]
	(sample Huojia N1 SHS)	56	56	_	1.0	2 [0.58, 1.47]
	(sample Jingxian JHS)	48	47	 ■ 	-0.11	[-0.48, 0.27]
Taguchi et al 2017	> gap-filling test *post	30		 	2.0	0 [1.36, 2.65]
	> gap-filling test *delayed	30		 ■	1.8	4 [1.23, 2.44]
	> multiple choice test *post	30		. •		8 [1.03, 2.13]
	> multiple choice test *delayed	30		 ■ 		0 [0.65, 1.55]
Kim 2016	(A1 sample)	20	20	-		1 [0.96, 3.46]
	(A2 sample)	22	22			5 [0.44, 2.07]
	(B1 sample)	21	16) [-0.53, 0.74]
Petersen 2010	> QFT, morphology score	19	18			3 [0.00, 1.46]
	> QFT, syntax score	19	18			6 [0.16, 1.76]
Harless et al 1999	> listening comp.	9) [–0.18, 1.39]
	> reading comp.	9		 		5 [0.25, 2.46]
	> speaking prof.	9		, 		1 [0.46, 3.15]
Hassani et al 2016	> Grammatical errors/sentence	10		 		[-0.53, 0.76]
	> Nb of proper replies	10		, • • ,) [-0.36, 0.96]
	> Phonation time/letter	10		 		5 [-0.59, 0.69]
	> Automatic prof. score	10		, : • 		3 [-0.26, 1.12]
Lee et al 2011a	(A1) > listening compr.	10	1) [-0.51, 1.09]
	(A2) > listening compr.	11	\vdash			[-1.50, -0.03]
	(A1) > hol. grammar rating	10		:		4 [0.34, 2.13]
	(A2) > hol. grammar rating	11		: , 		8 [0.27, 2.08]
	(A1) > hol. pronunciation rating	10		-		2 [0.43, 2.82]
	(A2) > hol. pronunciation rating	11		·		5 [0.65, 2.85]
	(A1) > hol. communicative ability rating	10		: 		4 [0.17, 2.11]
	(A2) > hol. communicative ability rating	11		<u> </u>		4 [0.66, 2.83]
	(A1) > hol. vocabulary rating	10		: 		1 [0.22, 2.20]
l 1 201 1 -	(A2) > hol. vocabulary rating	11		;		2 [0.48, 2.56]
Lee et al 2014a	> nb of grammatical errors	25		 		1 [-0.73, 0.04]
Nob at al 2012	> nb of words	25		: 		9 [0.18, 1.00]
Noh et al 2012	(Fool major) - DCT comprehensibility	40		, <u>:</u> ,		6 [0.93, 1.79]
Chiu et al 2007	(Engl. major) > DCT, comprehensibility	29		 		2 [-0.25, 0.29]
	(not Engl. major) > DCT, comprehensibility	20		, <u> </u>		3 [0.24, 0.82]
	(Engl. major) > DCT, use of speech acts	29		 		9 [-0.20, 0.38]
Rosenthal et al 2016	(not Engl. major) > DCT, use of speech acts	20		, <u> </u>		9 [0.24, 1.15]
Rusenthal et al 2016	Virtual agent, TTS voice	22				3 [-0.69, 0.13]
	Virtual agent, TTS voice	22			-0.31	[-0.72, 0.10]

Results Summary effect

General effectiveness of dialogue-based CALL for L2 proficiency development (k = 96):

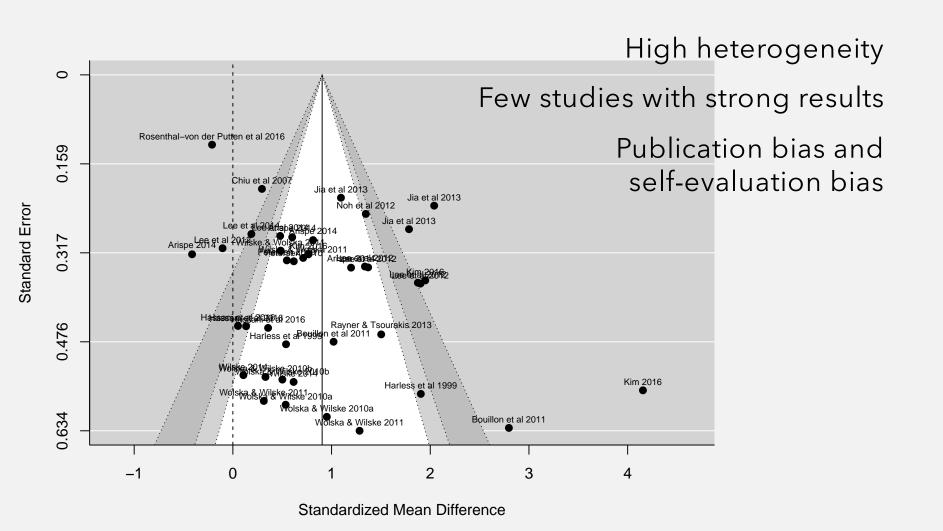
$$d = 0.605$$
 *** 95% CI = [0.377, 0.833]

= Medium effect (Plonsky & Oswald, 2014)

Results & discussion Summary effect compared to CALL/SLA

Global effect close to the median of meta-analyses in CALL/SLA (Plonsky & Oswald, 2014)

- \geq game-based learning (d = .53, Chiu et al, 2012)
- \leq CALL in general (d = .84, Plonsky & Ziegler, 2016)


Consistent with effect of face-to-face interaction (Mackey & Goo, 2007) and SCMC.

- \lesssim F2F interaction (d = .75, Mackey & Goo, 2007)
- ≤ SCMC (Ziegler, 2015; Lin, 2015)

Slightly inferior, but logical:

- Human interlocutors remain the gold standard!
- Outcome variables often very ambitious (holistic proficiency...) and treatment duration often very reduced (≤ 3h)

Results & discussion Limitations

Insights from a multilevel meta-analysis on the effectiveness of dialogue-based CALL

Object: dialogue-based CALL

Dialogue systems, chatbots, agents

Methods: meta-analysis

Studies collection and selection, effect sizes calculation and multilevel modeling

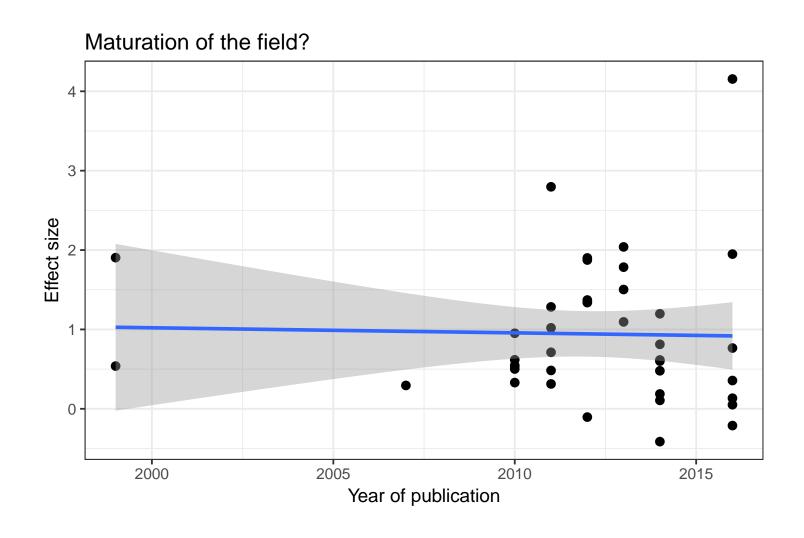
Results: effectiveness for L2 learning

General effectiveness

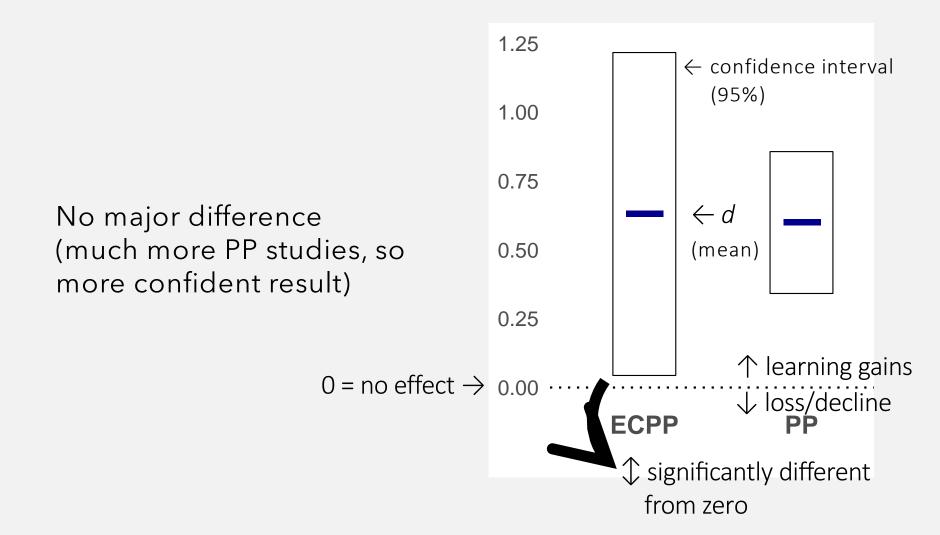
Relative effects per population, treatment characteristics and outcome variables

Results Moderator analysis

Insights about the influence of some covariates/moderators


Sample and context context, age, L1, L2, proficiency level

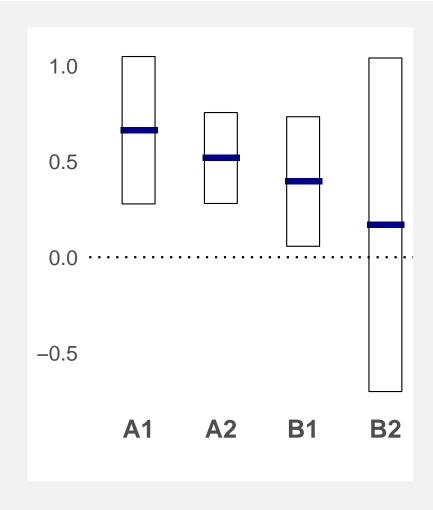
System (treatment) variables system, system type, dialogue type, primary modality, corrective feedback, initiative, embodied agent, gamified... treatment duration (in weeks), time on task (in hours)


Instruments/outcome variables proficiency/complexity/accuracy/fluency/vocabulary, speaking/writing, specific test

Reference					w	d [95% CI]
Jia et al 2013	(sample Huiwen JHS)	37	34	├ - -	0.05	5 [-0.38, 0.49]
	(sample Huojia N1 SHS)	56	56	_	1.0	2 [0.58, 1.47]
	(sample Jingxian JHS)	48	47	 ■ 	-0.11	[-0.48, 0.27]
Taguchi et al 2017	> gap-filling test *post	30		 	2.0	0 [1.36, 2.65]
	> gap-filling test *delayed	30		 ■	1.8	4 [1.23, 2.44]
	> multiple choice test *post	30		. •		8 [1.03, 2.13]
	> multiple choice test *delayed	30		 ■ 		0 [0.65, 1.55]
Kim 2016	(A1 sample)	20	20	-		1 [0.96, 3.46]
	(A2 sample)	22	22			5 [0.44, 2.07]
	(B1 sample)	21	16) [-0.53, 0.74]
Petersen 2010	> QFT, morphology score	19	18			3 [0.00, 1.46]
	> QFT, syntax score	19	18			6 [0.16, 1.76]
Harless et al 1999	> listening comp.	9) [–0.18, 1.39]
	> reading comp.	9		 		5 [0.25, 2.46]
	> speaking prof.	9		, 		1 [0.46, 3.15]
Hassani et al 2016	> Grammatical errors/sentence	10		 		[-0.53, 0.76]
	> Nb of proper replies	10		, • • •) [-0.36, 0.96]
	> Phonation time/letter	10		 		5 [-0.59, 0.69]
	> Automatic prof. score	10		, : • 		3 [-0.26, 1.12]
Lee et al 2011a	(A1) > listening compr.	10	1) [-0.51, 1.09]
	(A2) > listening compr.	11	\vdash			[-1.50, -0.03]
	(A1) > hol. grammar rating	10		:		4 [0.34, 2.13]
	(A2) > hol. grammar rating	11		: , 		8 [0.27, 2.08]
	(A1) > hol. pronunciation rating	10		-		2 [0.43, 2.82]
	(A2) > hol. pronunciation rating	11		·		5 [0.65, 2.85]
	(A1) > hol. communicative ability rating	10		: 		4 [0.17, 2.11]
	(A2) > hol. communicative ability rating	11		<u> </u>		4 [0.66, 2.83]
	(A1) > hol. vocabulary rating	10		: 		1 [0.22, 2.20]
l 1 201 1 -	(A2) > hol. vocabulary rating	11		;		2 [0.48, 2.56]
Lee et al 2014a	> nb of grammatical errors	25		 		1 [-0.73, 0.04]
Nob at al 2012	> nb of words	25		: 		9 [0.18, 1.00]
Noh et al 2012	(Fool major) - DCT comprehensibility	40		, <u>:</u> ,		6 [0.93, 1.79]
Chiu et al 2007	(Engl. major) > DCT, comprehensibility	29		 		2 [-0.25, 0.29]
	(not Engl. major) > DCT, comprehensibility	20		, <u> </u>		3 [0.24, 0.82]
	(Engl. major) > DCT, use of speech acts	29		 		9 [-0.20, 0.38]
Rosenthal et al 2016	(not Engl. major) > DCT, use of speech acts	20		, <u> </u>		9 [0.24, 1.15]
Rusenthal et al 2016	Virtual agent, TTS voice	22				3 [-0.69, 0.13]
	Virtual agent, TTS voice	22			-0.31	[-0.72, 0.10]

Moderator analysis Evolution across time

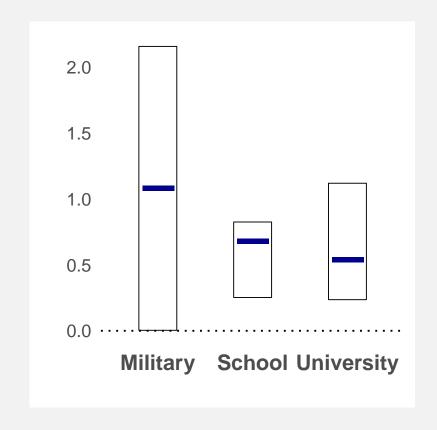
Moderator analysis Experimental design



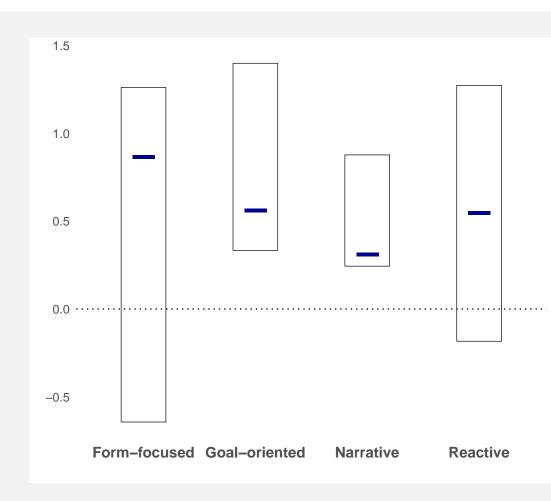
Moderator analysis

Participants: L2 proficiency

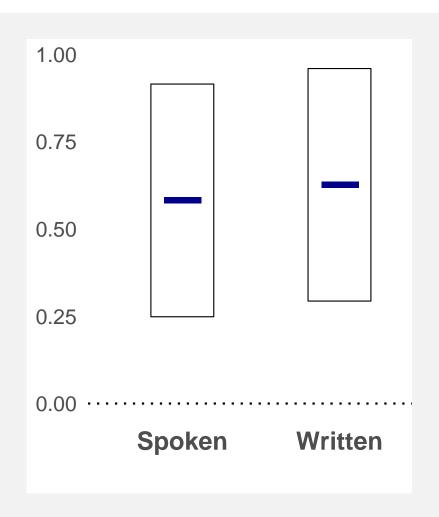
Beginners benefit more from these systems than advanced learners


Very significant difference and predictor (Q(df=3) = 10.8, p < .001)

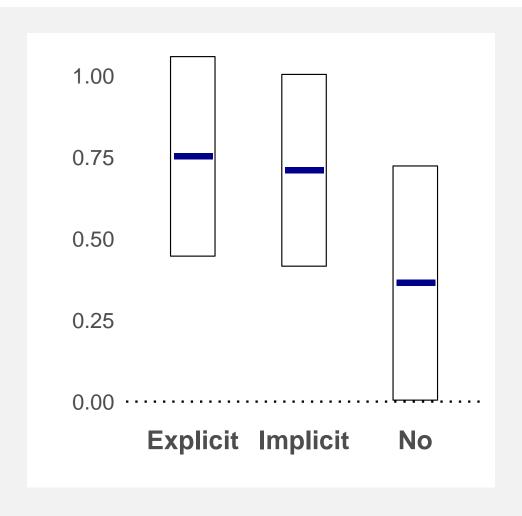
Moderator analysis Context


No significant difference (p = .58)

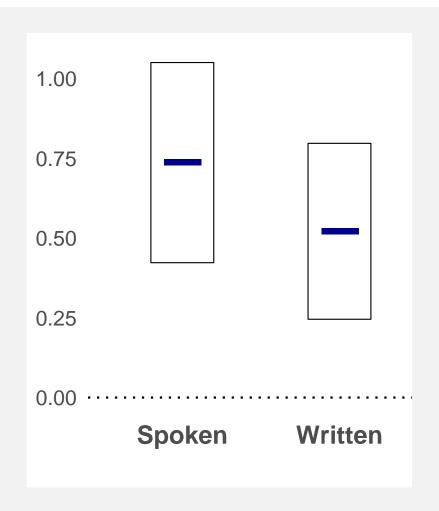
Seems to be effective both in the school as the university context (+ external, such as military, underrepresented).


Moderator analysis Type of system

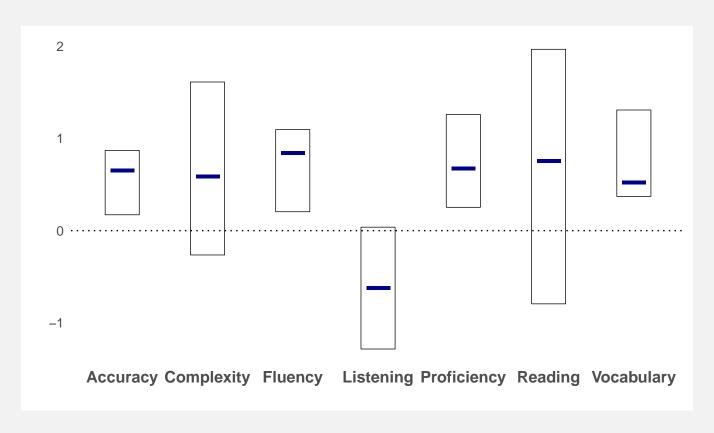
Goal-oriented systems seem to be more effective globally.


Moderator analysis System modality

Very similar effects, in both modalities.


Moderator analysis System: Corrective feedback

Consistently with what we know about corrective feedback, systems providing feedback are much more effective



Moderator analysis Outcome modality

Higher effect on speaking



Moderator analysis Outcome variables

More promising effects on **fluency**

Dialogue-based CALL: meta-analysis Summary

Medium effect of dialogue-based CALL on L2 proficiency development d = .605 ***

Possibly differentiated effect depending on proficiency level, system modality & test modality
But these observations still need to be confirmed by other studies

Need for more **comparable** designs, big enough samples and precise instruments Future research should inscribe itself in this

emerging field and compare its results within the field

Thank you! Merci! Dank u! ¡Gracias!

Serge Bibauw

serge.bibauw@kuleuven.be

Thomas François

thomas.francois@uclouvain.be

Wim Van den Noortgate

wim.vandennoortgate@kuleuven.be

Piet Desmet

piet.desmet@kuleuven.be

